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a b s t r a c t 

Cybersecurity risk management consists of several steps including the selection of appropriate controls 

to minimize risks. This is a difficult task that requires to search through all possible subsets of a set of 

available controls and identify those that minimize the risks of all stakeholders. Since stakeholders may 

have different perceptions of the risks (especially when considering the impact of threats), conflicting 

goals may arise that require to find the best possible trade-offs among the various needs. In this work, we 

propose a quantitative and (semi-)automated approach to solve this problem based on the well-known 

notion of Pareto optimality. For validation, we show how a prototype tool based on our approach can 

assist in the Data Protection Impact Assessment mandated by the General Data Protection Regulation on a 

simplified—but realistic—use case scenario. We also evaluate the scalability of the approach by conducting 

an experimental evaluation with the prototype with encouraging results. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Cybersecurity risk management, i.e. the identification, evalua- 

ion, and prioritization of risks followed by the application of con- 

rols to minimize cyber risks, is a vital aspect of the risk man- 

gement process of any organization. Several approaches are avail- 

ble to identify, evaluate, and prioritize cybersecurity threats such 

s the NIST Risk Management Framework 1 that consists of sev- 

ral steps including the selection of controls necessary to pro- 

ect the system and organization commensurate with risk. This 

s a non-trivial task as it typically requires to (a) search through 

 large space of possible configurations for controls mitigating a 

et of threats according to (b) how the various stakeholders (e.g., 

he organization providing a service and the users using it) per- 

eive risks. Different attitudes to risk by the various stakeholders 

ay give rise to conflicting goals when considering additional con- 

traints such as costs and skills required to deploy controls; for in- 

tance, customers of an online banking service may be interested 

o eliminate all threats for their financial transactions while the 

ank is willing to provide protection for the most common vulner- 
∗ Corresponding author. 

E-mail addresses: mmollaeefar@fbk.eu (M. Mollaeefar), ranise@fbk.eu (S. Ranise) . 
1 https://csrc.nist.gov/projects/risk-management/ 
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bilities while accepting the risk of more sophisticated attacks to 

aintain costs at an acceptable level. In this paper, we consider 

he problem of providing automated assistance to the process of 

electing the best possible configurations of controls to mitigate 

isks for all the stakeholders by making the following three contri- 

utions: 

(C1) we describe a methodology to semi-automatically assist 

stakeholders in the definition of their objectives that mea- 

sure how much risks are reduced by adopting a certain con- 

figuration of the controls (this addresses point (b) above 

and is done by extracting crucial information already elicited 

during the application of the adopted approach to risk man- 

agement); 

(C2) we define a decidable multi-objective optimization problem 

(based on the objectives previously identified)—called Multi- 

Stakeholder Risk Minimization Problem (MSRMP)—whose 

Pareto optimal solutions (see, e.g., Marler and Arora, 2004 ) 

are the subsets of the controls for which no stakeholder’s 

risk can be further reduced without increasing the risk of at 

least one of the other stakeholders (this is a first step to- 

wards addressing point (a) above and is done by exploiting 

automated state-of-the-art tools for computing the set of so- 

lutions); 

https://doi.org/10.1016/j.cose.2023.103206
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103206&domain=pdf
mailto:mmollaeefar@fbk.eu
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(C3) designing and experimentally evaluating heuristics to visit 

the set of all possible configurations and guarantee the scal- 

ability of the proposed technique (this complements the pre- 

vious contribution to address point (a) by identifying appro- 

priate strategies to partition large search spaces to make the 

approach viable in practice). 

The ability to tackle this kind of problem is particularly relevant 

hen considering privacy provisions deriving from national or in- 

ernational regulations. For instance, the General Data Protection 

egulation (GDPR) ( Regulation, 2016 ) requires to conduct a Data 

rotection Impact Assessment (DPIA) to guarantee the protection 

f personal data and preserve the rights and freedom of individ- 

als. This means that the organization offering a data processing 

ctivity should reduce the risk of the user to an acceptable level 

hile controlling costs and other business goals. In this context, 

eing able to compute the subsets of controls that minimize the 

isks of both the organization of the system and its users is a nec- 

ssary pre-requisite to identify the most appropriate configuration 

f the controls that offer the best possible trade-off among the var- 

ous objectives. 

Authors in Mollaeefar et al. (2020) consider a similar—albeit 

impler—optimization problem, allowing for finding the best pos- 

ible solutions among a (finite and small) set of possible RMPs. 

ndeed, such solutions are not guaranteed to be Pareto optimal, 

s those of the MSRMP considered in this paper. Additionally, 

n Mollaeefar et al. (2020) , no methodology to identify the set of 

ossible RMPs is provided whereas this work provides a structured 

pproach to the identification of the whole set of RMPs as solu- 

ions of the MSRMP. 

Outline 

In Section 2 , we discuss related works. In Section 3 , we intro-

uce the Multi-Stakeholder Risk Minimization Problem (MSRMP) 

nd its formalization as a multi-objective optimization problem (cf. 

ontribution (C2) above) together with an approach to reduce the 

earch space (cf. contribution (C3) above). For concreteness, we 

ropose a running example to illustrate the main ideas underlying 

he problem ( Section 3.1 ). To find all Pareto optimal solutions and 

ssist stakeholders to identify the risk management policies under 

hich the risk exposure is minimized, we propose an automated 

echnique to solve MSRMP instances ( Section 3.2 ). In Section 4 , we

iscuss a methodology to assist stakeholders in the definition of 

nstances of the MSRMP (cf. contribution (C1) above). In Section 5 , 

e describe a tool supporting the definition of MSRMP instances 

nd the computation of their solutions together with a set of ex- 

eriments aiming to understand the effectiveness of the strategies 

o reduce the search space and thus improving the scalability of 

he proposed approach (cf. contribution (C3) above). We conclude 

he paper with a summary of the main contributions and some 

ints for future work ( Section 6 ). 

. Related work 

This section discusses the related work. First, we look into sev- 

ral techniques for assessing cybersecurity risks that are widely 

sed in the literature ( Section 2.1 ). Then ( Section 2.2 ), we review

ome privacy impact assessment techniques together with a selec- 

ion of the most important methodologies, standards, GDPR guide- 

ines ( Section 2.3 ), and available tools ( Section 2.4 ) for assessing

he impact of violations of privacy requirements. Finally, we exam- 

ne different methods for selecting controls and multi-criteria risk 

ssessment techniques ( Section 2.5 ). 

.1. Cybersecurity risk assessment methodologies 

In the scope of information security, a wide range of risk as- 

essment approaches have been proposed by standardization in- 
2 
titutes and organizations such as NIST SP 800-30, ISO/IEC 27005, 

tc. Each of these methodologies has its own specific scope, pro- 

edures, and assessment techniques ( McLaughlin et al., 2016 ); de- 

pite the differences, they all share the same structure consisting 

f the following phases: (1) plan, (2) execute, and (3) report on 

he results ( Qassim et al., 2019 ). The process of preparing for an

ssessment begins with a thorough inventory of the facility’s hard- 

are and software, followed by a review of all applicable regula- 

ions, policies, procedures, and controls. In the second phase, the 

ssessment is put into action, which entails looking for potential 

ecurity flaws and software pitfalls. In the third and final phase, it 

s documented and coordinated that the reported flaws have been 

emedied. 

The National Institute of Standards and Technology 

NIST) ( Gary et al., 2002 ) published a special publication in 

002 that reflects the guideline for the process of organiza- 

ional risk management, and it was revised for the first time in 

012 ( NIST, 2012 ). Framing, assessing, responding, and monitoring 

isks have all been included in the risk management processes 

utlined in this guideline. The first process demonstrates how 

ecurity researchers are framing or constructing a risk context 

n order to develop a risk management strategy for further as- 

essing, responding to, and observing risks. Following that, the 

isk is assessed based on the frame of risk to identify external 

nd internal vulnerabilities, as well as threats to the investigated 

ystem, thereby preventing potential harm. Meanwhile, responding 

o hazards demonstrates how security researchers should respond 

hen a risk is identified during the evaluation. As the last process, 

onitoring risks relates to how organizations keep track of risk 

hroughout time, notably in terms of verifying the effectiveness of 

eactions to risks and determining shifts in operating systems that 

re caused by risk. 

ISO/IEC 27005 ( JTCIJSS, 2013 ) is the risk analysis standard for 

he ISO 270 0 0-series. The ISO/IEC 270 0 0 standards are designed 

o assist businesses in maintaining the security of their informa- 

ion assets. The standard establishes principles for information se- 

urity risk management and applies to any type of organization 

hat wishes to manage risks effectively in order to prevent jeopar- 

izing the business’s information security. ISO/IEC 27001, the infor- 

ation security management system (ISMS) standard, is the most 

ell-known of the ISO 270 0 0 family. Its purpose was to establish 

equirements for the execution of information security in accor- 

ance with a risk management framework. 

Octave Allegro is the next generation of the Operationally Crit- 

cal Threat, Asset, and Vulnerability Evaluation (OCTAVE) method- 

logy for identifying and evaluating information security risks. The 

CTAVE risk assessment process is designed to be as efficient as 

ossible when working with limited resources. Generally speaking, 

t is best suited for smaller to mid-size businesses. This method- 

logy is primarily concerned with information assets in terms 

f their use, storage, transportation, and processing, as well as 

heir exposure to threats, vulnerabilities, and disruptions as a re- 

ult ( Bieker et al., 2016 ). 

Factor Analysis of Information Risk (FAIR) ( Freund and 

ones, 2014 ) is a pragmatic risk management methodology that 

dentifies and quantifies threats to a business’s operational and cy- 

ersecurity frameworks. The FAIR model, which is compliant with 

nternational standards, was developed in 2005 and is widely re- 

arded as the leading Value at Risk (VaR) framework for opera- 

ional risk and cybersecurity. The FAIR model discovers and aggre- 

ates many aspects that may pose a risk to an organization, and 

t then thoroughly examines how these factors relate to or trigger 

nother potential concern for the organization. 

Regardless of the particular processes each of these security risk 

ssessment approaches above have, they all point out to the risk as 

n unexpected incident that would damage business assets, either 
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t

angible (e.g., organization’s hardware infrastructures) or intangi- 

le (e.g., organization’s services). The ultimate goal of an informa- 

ion security program based on risk management is to augment the 

rganization’s output (product and service) while simultaneously 

imiting the unexpected adverse outcomes generated by potential 

isks. However, these risk assessment methodologies are restricted 

n terms of what risks are related to data subjects and how to eval-

ate them, which is requested by more and more legal frameworks 

round the world, especially concerning privacy and other funda- 

ental rights. The GDPR and other applicable regulations mandate 

 risk-based approach and expressly recommend the execution of 

ata Protection Impact Assessments (DPIA), which is based on an 

ssessment of the privacy impact against the privacy rights of data 

ubjects. Such assessments are discussed in the following. 

.2. Privacy impact assessment 

Privacy Impact Assessment (PIA) is a risk management tech- 

ique that entails assessing the possible impact of systems 

n privacy as a result of processing operations on personal 

ata ( Clarke, 2009 ). Organizations should anticipate risks asso- 

iated with their effort s throughout their life-cycle, beginning 

ith the design phase but also during their operational life-cycle 

hrough iterative evaluation. Security by Design (SbD) and Privacy 

y Design (PbD) are principles increasingly identified as necessary 

or dealing with design faults that may jeopardize security or pri- 

acy in the system ( Alshammari and Simpson, 2017 ). Furthermore, 

heir application is also envisaged by the GDPR, as it demands Data 

rotection by Design (DPbD) for any systems that involve personal 

ata in their processing. Conducting PIA is mandated by data pro- 

ection authorities (DPAs) and standardization bodies, who have 

eveloped legislative frameworks and guidelines. The General Data 

rotection Regulation (GDPR) asserts that the data controller must 

o an impact assessment and document it before starting to pro- 

ess the data. This is done to make European citizens more trust- 

ul of digital services (Art. 35). The International Organization for 

tandardization (ISO) released ISO/IEC 29134:2017 gives guidelines 

or (i) a process on privacy impact assessments, and (ii) a struc- 

ure and content of a PIA report ( International Organization for 

tandardization, 2017a ). Numerous methodologies and frameworks 

n the context of privacy impact assessment have been proposed, 

e overview some methodologies, standards, and GDPR guidelines 

n the following section, and then discuss tool support for PIAs in 

ection 2.4 . 

.3. Methodologies, standards and GDPR guidelines 

Several privacy data protection standards, including 

S 10012:2017 ( Data protection-specification for a per- 

onal information management system, 2017 ), ISO/IEC 

9151:2017 ( International Organization for Standardization, 2017b ), 

nd ISO/IEC 27018:2014 ( International Organization for Standard- 

zation, 2014 ), incorporate the PIA as a required step in performing 

yber risk assessments. In the absence of a clear methodology, it is 

mpossible to conduct a PIA in conjunction with a risk assessment 

rocedure. Even though, according to the NIST privacy frame- 

ork ( Boeckl et al., 2020 ), data protection lies at the convergence 

f cyber security and privacy, the great majority of organizations 

reat the PIA separately from the cyber risk assessment ( Oetzel 

nd Spiekermann, 2014; Wei et al., 2020 ). Although ISO/IEC 

9134:2017 provides detailed guidelines for conducting a PIA, it 

nly outlines the fundamental concepts of impact analysis and 

rovides insufficient information for the risk assessor ( Wei et al., 

020 ). The literature has documented countless privacy metrics, 

lthough these often employ criteria of privacy-enhancing tech- 

ologies (PETs), such as the quantification of leaked information 
3 
r the number of indistinguishable users, rather than the impact 

n privacy ( Bisztray and Gruschka, 2019 ). 

Prior to the GDPR, PIA was not a legally required assessment. 

hen data processing is likely to result in a high risk to the rights 

nd freedoms of natural people, controllers are mandated to un- 

ergo a Data Protection Impact Assessment (DPIA), as provided by 

rticle 35 of the GDPR. On the other hand, the GDPR does not pre- 

cribe a specific assessment process ( Bieker et al., 2016; De and 

e Métayer, 2016; 2017; Meis and Heisel, 2015; Van Dijk et al., 

016; van Puijenbroek and Hoepman, 2017 ) while at the same time 

andating a clear understanding of the Personal identifiable in- 

ormation (PII), because any improper management of PIIs may be 

onsidered a violation of the GDPR. 

The French National Institute of Data Protection 

CNIL CNIL (Commission Nationale de l’Informatique et des 

ibertés) (2018) ), the British Information Commissioner’s Office 

ICO Information Commission’s Office (ICO) (2018) ), and the Cana- 

ian Privacy Act ( T. B. of Canada Secretariat, 2010 ) are just a few

f the national authorities who have issued guidance for DPIA. 

uch instructions have been updated to better serve DPIAs and 

o provide thorough guidelines on the regulatory standards and 

rocesses that they must follow. These guidelines include a variety 

f techniques and provide a variety of processes for performing a 

IA, but they are abstract or vague, making it extremely difficult to 

onduct such methodologies ( Ahmadian et al., 2018 ). As a result, 

rganizations have difficulty adopting a single methodology, which 

eads to a lack of support for PIAs ( Vemou and Karyda, 2018 ).

o demonstrate the lack of completeness among the most well- 

nown DPIA approaches, a more recent study examined seventeen 

uestions culled from the literature ( Vemou and Karyda, 2018 ). 

Along with the regulatory steps described above, academics 

ave recommended improvements to the DPIA processes, which 

re currently under consideration. To this end, formal model- 

ng techniques for privacy threats are being used to make the 

PIA process more systematic and structured. For instance, LIND- 

UN ( Wuyts and Joosen, 2015 ) is a threat modeling framework to 

dentify privacy threats, and it comprises of six main processes 

hat can assist analysts in systematically eliciting and mitigat- 

ng privacy threats. It is an acronym for Linkability, Identifiability, 

on-repudiation, Unawareness, Detectability, Disclosure of informa- 

ion, and Non-compliance . Both LINDDUN and the CNIL methodol- 

gy are based on the same principles. In comparison to the CNIL, 

owever, LINDDUN includes the capability to visualize data flow 

iagrams and privacy threat tree patterns. From a legal perspective, 

owever, LINDDUN lacks assessment steps and is not integrated 

nto a risk assessment process ( Papamartzivanos et al., 2021 ). 

The Standard Data Protection Model ( für Datenschutz, 2020 ) 

SDM) provides appropriate measures to transform the regulatory 

equirements of the GDPR to qualified technical and organizational 

easures. For this purpose, the SDM first records the legal re- 

uirements of the GDPR and then assigns them to the protection 

oals Data Minimization, Availability, Integrity, Confidentiality, Trans- 

arency, Unlinkability and Intervenability . The SDM thus transposes 

he legal requirements of the GDPR on protection goals into the 

echnical and organizational measures required by the Regulation, 

hich are described in detail in the SDM’s catalog of reference 

easures. However, this methodology can not be used alone for 

onducting a risk assessment; indeed, it is a valuable supplement 

o performing a DPIA where it can help data controllers to specify 

hich GDPR requirements may be at risk in a system. 

.4. PIA tools 

Existing PIA tools can be broadly classified as products of 

he following standardization efforts and their resulting schemes: 
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NISA Tool ( Evaluating the level of risk for a personal data pro- 

essing operation, 2020 ), GS1 EPC/RFID PIA Tool Gs1 (2015) , CNIL 

ool ( CNIL (Commission Nationale de l’Informatique et des Lib- 

rtés), 2020 ), SPIA Tool ( Introduction to the spia program, 2016 ), 

nd ASPIA Tool ( Papamartzivanos et al., 2021 ). The majority of 

ools on the market have a limited application scope, with typi- 

ally a single use case. Existing solutions facilitate the documenta- 

ion of data processing procedures, the formation of consent tem- 

lates, and the documentation of privacy and data protection poli- 

ies in significant numbers. Nonetheless, the cybersecurity posture 

f the organization performing the impact analysis is largely disre- 

arded ( Papamartzivanos et al., 2021 ). 

ENISA Tool . ENISA has provided an online tool for assessing 

he amount of risk associated with the processing of personal 

ata ( Evaluating the level of risk for a personal data processing op- 

ration, 2020 ). This tool is intended to provide direction to small 

nd medium-sized enterprises (SMEs) and help data controllers 

nd processors. The adopted approach includes six steps that give 

 streamlined approach, steer SMEs toward a data processing op- 

ration, and enable them to assess privacy-related security risks. 

he assessor establishes the context of the processing operation by 

ollowing the processes that have been suggested, and then man- 

ally analyzes how the fundamental rights and freedoms of indi- 

iduals may be compromised as a result of the potential breach 

f the security of thepersonal data. Four levels of impact are sup- 

orted, ranging from Low to Very High. Furthermore, the assessor 

anually documents both external and internal threats to the sys- 

em and assesses the likelihood of their occurrence. The final risk 

ssessment is provided following an analysis of the personal data 

rocessing operation’s impact and the associated threat probabil- 

ty. The tool facilitates the process of adopting new security and 

rivacy measures based on the outcome. 

GS1 EPC/RFID PIA Tool . The tool ( Gs1, 2015 ) aids in the assess-

ent of privacy issues associated with RFID implementations and 

ssists in the selection of privacy safeguards to be addressed dur- 

ng application development. The tool is an MS Excel file that fa- 

ilitates in the calculation of risk level scores using the formula 

isk = Impact × Likelihood − Controls. To evaluate the residual 

isk, the score takes control efficacy into account. The assessor an- 

wers specific questions/considerations during the procedure and 

an establish arbitrary controls and their effectiveness on a scale of 

 to 5. When it comes to privacy issues that can be triggered due 

o actual attack vectors targeting the deployment, the tool does not 

ocus on identifying technical aspects of the implementations. Fur- 

hermore, the score criteria are fairly vague and unspecific for pri- 

acy threats ( Agarwal, 2015 ), and the assessment is limited to the 

echnology sector of EPC/RFID applications. 

CNIL Tool . The CNIL tool ( CNIL (Commission Nationale de 

’Informatique et des Libertés), 2020 ) is designed to help data con- 

rollers perform DPIAs using the methodology released by CNIL 

n CNIL (Commission Nationale de l’Informatique et des Libertés) 

2012, 2018) . According to CNIL’s methodology, a PIA is based on 

wo main aspects: (i) fundamental rights and principles, which 

re ”non-negotiable”, mandated by law and which must be re- 

pected, regardless of the risk nature, and (ii) management of data 

ubjects’sprivacy risks, which determines the appropriate technical 

nd organizational controls to protect personal data. The following 

teps must be followed by PIA practitioners: 

• Define and document the context of the data processing action 

under consideration 

• Analysis of controls that can protect fundamental principles 

• Assessment and management of privacy risks related to data 

• Formal documentation and validation of the PIA 

The PIA tool assists practitioners in carrying out the actions that 

ere indicated earlier in this paragraph. The evaluation outcome is 
4 
epicted as a heat map, in which the risks are arranged in a man- 

er that considers both their criticality and likelihood. The CNIL 

ool supports four levels of severity scales; Negligible, Limited, Sig- 

ificant, Maximum. 

SPIA Tool . The Security and Privacy Impact Assessment (SPIA) is 

 tool developed by the University of Pennsylvania ( Introduction to 

he spia program, 2016 ) intended to assist organizations in con- 

ucting PIA by identifying risk-prone regions and choosing the 

ost appropriate tactics and timetables for risk reduction. This tool 

oncentrates on safeguards while focusing on both security and 

rivacy for the protection of data. The tool has two versions; the 

rst version is an MS Excel file, whereas the second version (SPIA 

.0) is a web-based application. The tool allows organizations to 

ake probability rankings and threat consequences and automat- 

cally score risk into categories of High, Significant, Moderate and 

ow. Additionally, the SPIA Tool is a flexible and adaptable tool that 

upports various security and privacy threats. 

APSIA Tool . The Automated Privacy and Security Impact As- 

essment (APSIA) is powered by the use of interdependency graph 

odels and data processing flows used to create a digital reflection 

f the cyber-physical environment of an organization. The method- 

logy presents an extensible privacy risk scoring system for quanti- 

ying the privacy impact triggered by the identified vulnerabilities 

f the ICT infrastructure of an organization. Indeed, APSIA seeks 

o bridge the gap between the cyber-risk and privacy risk assess- 

ents, which are typically handled as separate management pro- 

esses. In APSIA, the impact level is defined as a combination of 

hree components, namely, (a) the level of impact on the funda- 

ental rights and freedoms of the individuals, (b) the scope of im- 

act to the data processing activities, and (c) the type (i.e., sensi- 

ivity) of the processed data. However, in APSIA, the selection of 

ptimal mitigation controls is not considered. Their aim is only to 

upport the decision-makers in making informed decisions during 

he risk mitigation life cycle. 

.5. Multi-Criteria risk assessment & control selection methodologies 

In practice, cost and time constraints, feasibility, and other or- 

anizational considerations make it impractical to implement all 

itigations (also known as security controls) for every threat. Op- 

imizing mitigation selections has been approached by several re- 

earchers, who have taken an extensive list of possible mitiga- 

ions and narrowed it down to just a few that meet specific cri- 

eria or goals ( Llansó et al., 2019 ). The criteria themselves and 

he analysis methods are the most intriguing dimensions in this 

rea. Based on a grounded theoretical research, authors in Dor and 

lovici (2016) present a model of information security investment 

ecision-making. Numerous factors, including policy, competitive 

dvantage, financial considerations, quality, compliance, customer 

xpectations, and strategy, have a profound impact on the man- 

er in which organizations take these decisions. Selection of a se- 

urity control portfolio for a given circumstance requires taking 

nto account several factors, such as an organization’s overarch- 

ng security concerns, the criteria of individual assets in the en- 

ironment, potential threats, and the quality of controls. Authors 

n Llansó et al. (2019) , for example, offer a review of the litera- 

ure that leads to the identification of four criteria: organizational, 

sset, threat, and control. For instance, in Rees et al. (2011) , the 

uthors developed a decision support system for assessing the un- 

nown risk an organization faces during a cyber attack as a func- 

ion of uncertain threat rates, countermeasure costs, and impacts 

n its assets. The system employs a genetic algorithm to search 

or the optimal combination of countermeasures, allowing the user 

o determine the preferred tradeoff between the portfolio cost and 

he resulting risk. In Gupta et al. (2006) , a Genetic Algorithm (GA)- 

ased method was developed that enables enterprises to select the 
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owest-cost security profile with the greatest vulnerability cover- 

ge. Authors, in Kavallieratos et al. (2021) developed a technique 

hat permits the best selection of cybersecurity controls for com- 

lex cyber-physical systems (CPSs) that contain other CPSs as com- 

onents. The technique estimates the overall risk by considering 

he likelihood and impact values for each of the system’s compo- 

ents and analyzing how risk propagates across information and 

ontrol flow components. Then to discover the optimal set of con- 

rols for each component, the approach applies a genetic algorithm 

orkflow. 

Multi-criteria decision-making (MCDM) ( Figueira et al., 2005 ), 

ommonly known as multiple-criteria decision analysis (MCDA), is 

idely applied in the selection of security portfolios. MCDM is a 

ethod for analyzing multiple conflicting criteria and is used to 

xamine problems in which there are several measurements of 

osts and benefits that may be traded off to arrive at the op- 

imal solution within the limits that have been specified. Fuzzy 

et theory ( Otero, 2014 ), multi-attribute utility theory (e.g., value 

unctions, knapsack strategy) ( Fielder et al., 2016; Panaousis et al., 

014; Shahpasand et al., 2015; Smeraldi and Malacaria, 2014 ), 

nd evolutionary multi-objective optimization (EMO), commonly 

nown as genetic algorithms ( Kiesling et al., 2016 ), are some of the

CDM methodologies being investigated by researchers to address 

his problem. 

There are a lot of risk assessment approaches 

hich consider multi-criteria to calculate risk exposure. 

n Zulueta et al. (2013) risk analysis is modeled as MCDM 

roblem in which experts express their preferences for each risk, 

ver two traditional criteria: probability and impact. A risk-based 

ecision framework ( Ganin et al., 2017 ) is proposed for cybersecu- 

ity strategy prioritization. There are a few approaches that have 

efined risk impact criteria for different stakeholders. For instance, 

n the context of cloud computing, in Albakri et al. (2014) a 

ecurity risk assessment framework is proposed that can enable 

loud service providers to assess security risks in the cloud com- 

uting environment and allow cloud clients with different risk 

erspectives to contribute to risk assessment. In analyzing the 

onflict of interest between the risk owner and the risk actors 

n Rajbhandari and Snekkenes (2012) authors proposed conflicting 

ncentives risk analysis (CIRA) method in which risks are mod- 

lled in terms of conflicting incentives. The goal of CIRA is to 

rovide an approach in which the input parameters can be audited 

ore easily. In Wright (2012) , the authors provide a seven-step 

pproach to PIA. They have declared that privacy risk shall be 

ssessed from both data subjects and system perspective. The 

uthors recommend privacy controls that can help to minimize, 

itigate, or eliminate the identified risk. Similarly, recently, the 

uthors ( Iwaya et al., 2019 ) proposed a privacy risk assessment 

y considering both perspectives. Their approach is based on the 

IA methodology proposed by Wright (2012) in the case of mo- 

ile health data collection systems, which proposes a systematic 

dentification and evaluation of privacy risks. 

. Multi-Stakeholder risk minimization problem (MSRMP) 

Cyber-risk is a measure of the likelihood and the impact of 

hreats, i.e. circumstances or events with the potential to harm 

 cyber-system such as the unauthorized disclosure, destruction, 

odification, or interruption of system assets. Cyber-risk manage- 

ent is the identification and assessment of risks, followed by the 

efinition and enforcement of appropriate mitigation measures for 

isk minimization. The identification of risks depends on the as- 

ets of the system to be protected and requires to perform threat 

odeling, i.e. to understand and describe how an adversary might 

ompromise a system. The assessment of risks amounts to evalu- 

ting the impact and the likelihood of the various threats. For in- 
5 
tance, a backdoor in a certain version of an operating system may 

ave a dramatic impact. The risk may be severe if patches are ap- 

lied late as the likelihood that an adversary exploits the vulner- 

bility is high whereas the risk becomes small when patches are 

uickly applied as the time-window during which an attacker can 

xploit the vulnerability is substantially reduced. The balance be- 

ween impact and likelihood is key to risk assessment. Once risks 

ave been identified and assessed, suitable Risk Management Poli- 

ies (RMPs) should be defined and enforced. RMPs comprise both 

echnical (e.g., deploy the latest version of the Transport Layer Se- 

urity protocol) and organizational (e.g., a cyber security aware- 

ess and training program for employees) measures to minimize 

isks. Indeed, the ultimate goal of risk management is to minimize 

isks while maximizing the chances to reach business objectives 

nd complying with legal provisions, such as the GDPR. Indeed, 

ailing to do this may bring in additional risks and costs due to 

n unsatisfactory return on investment or fines for lack of compli- 

nce. 

Given the increasing complexity of cyber-systems, it is routine 

hat several stakeholders cooperate in their design, development, 

nd deployment. This further complicates risk management. For in- 

tance, according to the GDPR, in case a system processes personal 

ata, its data controller shall guarantee that the risk of violating 

he rights and freedom of the data subjects is low. The data con- 

roller must do this by considering state-of-the-art RMPs and bud- 

et constraints. When the data controller involves a data processor, 

he latter may have strict computational constraints for scalabil- 

ty and efficiency that, in turn, guarantee economy of scale. While 

he various stakeholders may agree on a common set of threats 

or a given system together with their likelihood, they will have 

iverging criteria to evaluate the potential impact of the identified 

hreats. For instance, data subjects will favor comprehensive RMPs 

o reduce the risk of data breaches. In contrast, a data controller 

r a data processor may be more interested in cheap and easy 

o enforce RMPs that cover most threats while neglecting those 

ess likely to occur. Besides making the definition of the impact of 

hreats dependent on each stakeholder, this greatly complicates the 

earch for RMPs that minimize risks. Indeed, the search for RMPs 

hat simultaneously minimize the risk level for each stakeholder 

ecomes a non-trivial task in the presence of conflicting objectives 

nd requires the adoption of the notion of Pareto optimality. To 

nderstand the problem, consider the situation in which we have 

wo RMPs rpm1 and rpm2 with risk vectors 〈 1 , 2 , 1 〉 and 〈 1 , 1 , 2 〉 ,
espectively, where the first component is the risk of the data sub- 

ect, the second is that of the data controller, and the third is that 

f the data processor. The data subject has no preference between 

he two RMPs, the data controller prefers rpm1 over rpm2 , and the 

ata processor rpm2 over rpm1 . In other words, no RMP minimizes 

he risk for all the stakeholders; so, which one between rpm1 over 

pm2 should be preferred? According to the notion of Pareto opti- 

ality (see, e.g., Marler and Arora, 2004 ), both rpm1 and rpm2 are 

o be considered optimal and further aspects need to be consid- 

red to select one of the two such as the fact that one of the two

romises to provide a higher return on investment or that it is eas- 

er to show its compliance with the GDPR or other legal provisions. 

ecause vectors cannot be ordered completely, all the Pareto opti- 

al solutions can be regarded as equally desirable in the mathe- 

atical sense and we need a decision maker to select the preferred 

ne among them. To enable the decision maker to do this, we need 

o be able to compute the set of Pareto optimal solutions. Below 

 Section 3.2 ), we formalize the problem of finding Pareto optimal 

onfigurations of RMPs, i.e., configurations minimizing the risk of 

takeholders, in the framework of multi objective optimization and 

how how it can be solved by using general purpose algorithms 

nder reasonable assumptions. Primarily, we introduce a simplified 

ut realistic running example to better grasp the problem. 
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Fig. 1. Overview on the main stakeholders in the scenario and their interaction with the system’s components. 
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.1. Running example: An application of the GDPR’s DPIA 

We consider the situation of an Italian company, called ACME 

elow for the sake of anonymity, that must perform a Data Protec- 

ion Impact Assessment (DPIA) for one of its software applications, 

s required by Article 35 of the General Data Protection Regula- 

ion 

2 (GDPR). The goal of a DPIA is to protect the rights and free-

oms of EU citizens with particular relevance to those related to 

heir privacy. For this, it is crucial to perform an appropriate pri- 

acy risk assessment. There are three main stakeholders involved 

n the process, namely (i) the Data Subject , the patient whose data 

re being collected, stored and processed by the application, (ii) 

he Data controller , ACME which is responsible for offering the data 

rocessing activities implemented by the software application, and 

iii) the Data processor , a company mandated by the Data Con- 

roller to design and implement the application deploying the var- 

ous data processing activities. The data processor is a third party 

rganization, possibly external to the data controller. In the rest 

f this section, we focus on the problem of identifying appropri- 

te security controls among a set of available ones that minimize 

he risks of all three stakeholders. A peculiarity of this risk assess- 

ent is that the data controller must perform it to make the risk 

f the data subjects acceptable. Indeed, this may give rise to con- 

icts with the data controller’s and data processor’s requirements 

n budgets and skills shortage. 

ACME develops a software application, called HCare, exposing 

n API service to allow its clients to work together, as illustrated 

n Fig. 1 . Through the API, HCare connects three main stakehold- 

rs: the Health Service Provider (HSP), the API provider (ACME), 

nd the patients which are the data controller, the data processor, 

nd the data subjects in the context of the GDPR, respectively. No- 

ice that an HSP in our case can also be an independent developer 

ho provides IT-only services without offering actual health care 

upport; for example, providing data visualization tools. Finally, the 

nd-user is typically the patient using the app to send biometric 

ata or user-initiated requests and receive responses from the HSP, 

.g., prescriptions from a doctor, medical alerts, etc. HSPs use the 

PIs to perform some operations such as create, read, update, and 

elete (CRUD operations) in a compliant way—i.e., by considering 

roper roles and permissions and storing and accessing the data 

ccordingly. The health data is stored in a cloud environment, con- 

rolled, and monitored by ACME. Consequently, from a legal per- 

pective, ACME acts as the data processor. However, due to the na- 

ure of its offered services, ACME has also to support data con- 

rollers to comply suitably. Therefore, it looks at the issue of GDPR 

ompliance from both perspectives, of the data processor and data 

ontrollers. This is handled by a service level agreement between 

CME and the HSP. 
2 https://gdpr- info.eu/art- 35- gdpr/ 

d

6 
ACME, as data controller, must be aware of how to properly 

rocess the patients’ data because there could be a variety of 

armful or threat events that could put even the patients’ life at 

isk. For instance, data (such as the patient’s medical history) could 

e lost or corrupted due to a hardware failure. Patients may suf- 

er severe consequences as a result of this situation because the 

ealthcare data in question is used to offer healthcare services 

uch as medical prescriptions, and missing or damaged data may 

esult in incorrect diagnoses or the inability to provide the ser- 

ice. For this reason, data storage must be trustworthy, which can 

e achieved by implementing appropriate data protection controls. 

or instance, more frequent backups or data replication are po- 

ential controls to mitigate possible risks in the case of a hard- 

are failure. However, these solutions change the risk exposure of 

CME. Data replication, particularly, introduces the needs and all 

he associated risks of a sophisticated network architecture. For 

xample, business risks due to the rising costs, but also process 

isks due to the difficulty of network configuration. This exam- 

le demonstrates the consequences of the law: given that the data 

ubject has certain fundamental rights, it is the data controller’s 

esponsibility to put in place the appropriate technical and orga- 

izational means to ensure that the rights of the data subject are 

espected. The endeavor to reduce the risks for the data subject, 

n the other hand, may result in an increase in the risk expo- 

ure for ACME, which may include risks other than those related 

o personal data. From these considerations we can see that it is 

ikely that each stakeholder has different preferences for the var- 

ous RMPs yielding different threat impact levels for each threat. 

herefore, we must solve the problem of selecting the optimal 

isk management policy, which we formalize in the framework of 

ulti-objective optimization in the next section. 

To summarize, for the running example, we consider a set S
ontaining two stakeholders, namely the Data Controller and the 

ata Subject, a list of 5 threats T 1 , . . . , T 5 shown in Table 2 and

 list of associated security controls c 1 , . . . , c 25 shown in (the first 

wo columns of) Table 3 . Thus, we have 5 threats and 25 controls; 

he latter are associated to each threat as follows: c 1 , . . . , c 5 to T 1 ,

 6 , . . . , c 15 to T 2 , c 16 , . . . , c 19 to T 3 , c 20 , . . . , c 22 to T 4 , and c 23 , . . . , c 25 

o T 5 . In the next section, we use the running example to illus- 

rate the formal notions we introduce, albeit in a simplified form 

or the sake of simplicity and space. So, for instance, we will con- 

ider only 3 threats instead of 5 and only 5 security controls in- 

tead of 25. We observe that we use c 1 , . . . , c 5 as identifiers of the

ecurity controls in the following section for the sake of simplic- 

ty, but they have been renamed in Table 3 where the whole set of 

ontrols is listed. The solution of the multi-objective optimization 

roblem in its full generality is discussed later in Section 5.1 . A 

ummary of all the variables used in this paper along with a brief 

escription is provided in Table 1 . 

https://gdpr-info.eu/art-35-gdpr/
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Table 1 

List of used variables in this paper. 

Variable Description 

T The set of threats 

S The set of stakeholders 

C The set of controls 

P The protection criteria 

G The set of protection goals 

C T A family of controls associated to T ∈ T 
x T The residual risk for threat T 

i s The impact level for each stakeholder s ∈ S
μT (c) The impact of T after applying control c ∈ C T 
PW 

s 
p The associated weight to the preference p of stakeholder s 

il max Donates to the maximum impact level 

al 
s 
p (T ) The aversion level of threat T for the preference p of stakeholder s 

OW T The observation weight for threat T 

NT C T The normalized threat criticality value for threat T 

AG T The number of goals in G affected by a threat T ∈ T 
oir (s ) The overall impact residue for stakeholder s 
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.2. Problem formalization 

Let S be a finite set of stakeholders and T a finite set of threats.

or each stakeholder s in S , we assume a mapping i s : T → I that

omputes the impact level of the harmful events generated by a 

hreat T when it occurs, where I is a sub-set of the reals denoting 

mpact levels, intuitively il 1 < il 2 implies that the impact level il 1 
s less severe than the impact level il 2 . 

xample 1. Referring to the example in Section 3.1 , the set S of 

takeholders contains s 1 = Data controller (ACME) and s 2 = Data 

ubject (the patient) . Consider the set T of threats to contain T 1 =
nlimited data storage , T 2 = Unauthorized access , and T 3 = Linkage 

ttack , as three potential threats. We may define the mappings i s 1 
nd i s 2 : T → I by means of a table as follows: 

T 1 T 2 T 3 

i s 1 0.6 0.2 0.3 

i s 2 0.3 0.5 0.6 

The values in the first and second rows of the table denote the 

mpact levels for each threat from the point of view of the data 

ontroller ( s 1 ) and data subject ( s 2 ), respectively. For instance, the

mpact level associated to threat T 1 from the data controller point 

f view is 0.6 whereas from the data subject point of view is 0.3. 

As shown in the example above, i s is typically specified by using 

 tabular format. This is also the case for other mappings that we 

onsider below. 

Let C be a finite set of controls and {C T } T ∈T a family of finite

et of controls; intuitively, C T is the set of controls that, alone or 

n combination, may mitigate a threat T . 

xample 2. To mitigate the risk of threats in Example 1, we iden- 

ify a family of set of controls {C T 1 , C T 2 , C T 3 } where C T 1 = { c 1 , c 2 } ,
 T 2 

= { c 3 , c 4 } , and C T 3 = { c 5 } . For instance, c 1 can be (Ensuring

ata minimization), c (Enabling data deletion), c (Ensuring se- 
2 3 

Table 2 

An example of possible threat scenarios and associated malicious activities in the ACM

Threats (T ) Possible malicious activity 

T 1 - Unlimited data storage Personal data is kept stored longer than

T 2 - Unauthorized access and disclosure Due to over-privileged or inadequate co

patients’ data or disclose by mistake. 

T 3 - Linkage attack Patients and their personal data can re-

T 4 - Denial of service Attackers can disrupt the communicatio

data from being uploaded to the server.

T 5 - Threat to intervenability ACME does not implement a procedure 

block individual data. 

7 
ure storage), c 4 (Logging access to personal data), and c 5 (Ensur- 

ng data anonymization). 

For each threat T in T , we assume a mapping μT : C T → [0 . 1)

hat quantifies the mitigation by a control in C T on the impact of 

 threat T . Intuitively, μT (c) can have three possible statuses: (i) 

T (c) = 0 clarifies that the control c is not adopted and thus can 

ot contribute in mitigating threat T , (ii) 0 < μT (c) < 1 means that

he control c is adopted and partially mitigates the threat T , and 

iii) μT (c) = 1 represents that the control is adopted and fully mit- 

gates T . 

We are now in the position to define the impact residue of the 

hreat T under a given mitigation mapping μT as: 

r s (T ) = i s (T ) · (1 − �c∈C T μT (c) 

|C T | ) . (1) 

e observe that the expression between parentheses is the mitiga- 

ion obtained by adopting some of the controls in C T associated to 

 and that the degree of effectiveness of a control c in mitigating a 

hreat T is given by μT (c) . Because of its importance, we introduce 

he following abbreviation: 

 (T ) = 

�c∈C T μT (c) 

|C T | (2) 

hat depends on the mitigation mapping μT (and since ir s (T ) = 

 s (T ) · (1 − m (T )) also ir s (T ) depends on μT ) but we avoid to make

uch a dependence explicit to simplify notation. Given a family 

 μT } T ∈T of mitigation mappings, the overall impact residue for a 

iven stakeholder s ∈ S is defined as oir (s ) = �T ∈T ir s (T ) , where

r s (T ) is evaluated under the mitigation mapping μT . In other 

ords, oir (s ) is the sum, over the set T of threats, of all impact 

esidues, each one evaluated under the associated mitigation map- 

ing in { μT } T ∈T . 
xample 3. For simplicity, we consider three possible values in the 

o-domain of μT 1 
, μT 2 

, and μT 3 
, namely 0 (the control does not 

itigate the threat), 0.5 (the control partially mitigates the threat), 

nd 1 (the control eliminates the threat). Continuing the previous 

xamples, the mitigation mappings for T 1 , T 2 , and T 3 can be defined

s follows: 

〈 μT 1 (c 1 ) , μT 1 (c 2 ) 〉 m (T 1 ) 〈 μT 2 (c 3 ) , μT 2 (c 4 ) 〉 m (T 2 ) 〈 μT 3 (c 5 ) 〉 m (T 3 ) 

〈 0 , 0 〉 0 〈 0 , 0 〉 0 〈 0 〉 0 

〈 0 , 0 . 5 〉 0.25 〈 0 , 0 . 5 〉 0.25 〈 0 . 5 〉 0.5 

〈 0 . 5 , 0 〉 0.25 〈 0 . 5 , 0 〉 0.25 

〈 0 . 5 , 0 . 5 〉 0.5 〈 0 . 5 , 0 . 5 〉 0.5 

〈 1 , 0 〉 0.5 〈 1 , 0 〉 0.5 

〈 0 , 1 〉 0.5 〈 0 , 1 〉 0.5 

〈 1 , 0 . 5 〉 0.75 〈 1 , 0 . 5 〉 0.75 

〈 0 . 5 , 1 〉 0.75 〈 0 . 5 , 1 〉 0.75 

here the first column of each table lists all possible mitigation 

ectors that are assigned to the controls of C T 1 , C T 2 , and C T 3 , respec-

ively, when considering an arbitrary total order on the controls (in 

ur case c i comes before c j if i < j for i, j ∈ { 1 , . . . , 5 } . For instance,

he vector 〈 0 . 5 , 0 〉 means that c 1 partially mitigates T 1 whereas c 2 
as no mitigation effect on T . 
1 

E scenario. 

 necessary for the purposes by ACME. 

ntrols, insiders (i.e., a medical practitioner or an ACME’s staff) modify 

identify in de-identified data sets by outsiders’ malicious. 

n channel between patients and the healthcare service provider to prevent 

 

(technical and /or processes) that allows the patients to rectify, erase, or 
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Table 3 

Threats with associated security controls (first two columns) together with a mitigation mapping (third column) and the resulting 

risk residue (fourth column). Legend: each control is associated to a mitigation level among three possible values = 0 (the 

control has not been selected for implementation), = 0. (the control has been selected for implementation but it is only partially 

effective to mitigate T ), or = 1 (the control has been selected for implementation and it is fully effective to mitigate T ). 

Threats (T ) Controls {C T } T∈{ T 1 ,T 2 ,T 3 ,T 4 ,T 5 } Mitigation Mapping μT Risk residue x T 

T 1 c 1 ) Purpose specification 0.4 

c 2 ) Ensuring limited data processing 

c 3 ) Ensuring purpose related processing 

c 4 ) Ensuring data minimization 

c 5 ) Enabling data deletion 

T 2 c 6 ) Ensuring data subject authentication 0.35 

c 7 ) Ensuring staff authentication 

c 8 ) Ensuring device authentication 

c 9 ) Logging access to personal data 

c 10 ) Performing regular privacy audits 

c 11 ) Ensuring data anonymization 

c 12 ) Providing confidential communication 

c 13 ) Providing usable access control 

c 14 ) Ensuring secure storage 

c 15 ) Ensuring physical security 

T 3 c 16 ) Providing confidential communication 0.25 

c 17 ) Logging access to personal data 

c 18 ) Ensuring data subject authentication 

c 19 ) Ensuring data anonymization 

T 4 c 20 ) Enabling offline authentication 0.83 

c 21 ) Network monitoring 

c 22 ) Prevention mechanisms for DoS attacks like firewalls, etc. 

T 5 c 23 ) Informing data subjects about data processing 0.66 

c 24 ) Handling data subject’s change requests 

c 25 ) Providing data export functionality 
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xample 4. From the definitions of i s (T ) and m (T ) in Examples 1

nd 3, respectively, we can compute the impact residue ir s (T ) = 

 s (T ) · (1 − m (T )) for each mitigation vector in Example 3 as fol-

ows: 

T ir s 1 (T ) ir s 2 (T ) 

T 1 0 . 6 × (1 − 0) = 0 . 6 0 . 3 × (1 − 0) = 0 . 3 

0 . 6 × (1 − 0 . 25) = 0 . 45 0 . 3 × (1 − 0 . 25) = 0 . 225 

0 . 6 × (1 − 0 . 25) = 0 . 45 0 . 3 × (1 − 0 . 25) = 0 . 225 

0 . 6 × (1 − 0 . 5) = 0 . 3 0 . 3 × (1 − 0 . 5) = 0 . 15 

0 . 6 × (1 − 0 . 5) = 0 . 3 0 . 3 × (1 − 0 . 5) = 0 . 15 

0 . 6 × (1 − 0 . 5) = 0 . 3 0 . 3 × (1 − 0 . 5) = 0 . 15 

0 . 6 × (1 − 0 . 75) = 0 . 15 0 . 3 × (1 − 0 . 75) = 0 . 06 

0 . 6 × (1 − 0 . 75) = 0 . 15 0 . 3 × (1 − 0 . 75) = 0 . 06 

T 2 0 . 2 × (1 − 0) = 0 . 2 0 . 5 × (1 − 0) = 0 . 5 

0 . 2 × (1 − 0 . 25) = 0 . 15 0 . 5 × (1 − 0 . 25) = 0 . 375 

0 . 2 × (1 − 0 . 25) = 0 . 15 0 . 5 × (1 − 0 . 25) = 0 . 375 

0 . 2 × (1 − 0 . 5) = 0 . 1 0 . 5 × (1 − 0 . 5) = 0 . 25 

0 . 2 × (1 − 0 . 5) = 0 . 1 0 . 5 × (1 − 0 . 5) = 0 . 25 

0 . 2 × (1 − 0 . 5) = 0 . 1 0 . 5 × (1 − 0 . 5) = 0 . 25 

0 . 2 × (1 − 0 . 75) = 0 . 05 0 . 5 × (1 − 0 . 75) = 0 . 125 

0 . 2 × (1 − 0 . 75) = 0 . 05 0 . 5 × (1 − 0 . 75) = 0 . 125 

T 3 0 . 3 × (1 − 0) = 0 . 3 0 . 6 × (1 − 0) = 0 . 6 

0 . 3 × (1 − 0 . 5) = 0 . 15 0 . 6 × (1 − 0 . 5) = 0 . 3 

where the second and third columns represent the computed 

mpact residues under all possible mitigation mappings and the 

orresponding threat (in the rows) for s 1 and s 2 , respectively. For 

nstance, the impact residue under the mitigation vector 〈 0 . 5 , 1 〉
or T 1 from the point of view of s 1 is 0.15 whereas it is 0.06 for s 2 .

ecalling that oir (s ) = �T ∈T ir s (T ) , the overall impact residue for s 1 
s oir (s 1 ) = 0 . 6 + 0 . 2 + 0 . 3 = 1 . 1 and for s 2 is oir (s 2 ) = 0 . 3 + 0 . 5 +
 . 6 = 1 . 4 where 〈 μT 1 

(c 1 ) , μT 1 (c 2 ) 〉 = 〈 0 , 0 〉 , 〈 μT 2 
(c 3 ) , μT 2 

(c 4 ) 〉 =
 0 , 0 〉 , and 〈 μT 3 

(c 5 ) 〉 = 〈 0 〉 . 
The Multi-Stakeholder Risk Minimization Problem (MSRMP) 

mounts to solve the following multi-objective optimization prob- 

em: 

in 〈 μT 〉 T∈T 〈 oir (s ) 〉 s ∈S (3) 
8 
here 〈 〉 T ∈T and 〈 〉 s ∈S are the vectors of all mitigation mappings 

nd overall impact residues (under the associated mitigation map- 

ings) according to arbitrary total orders over T and S , respec- 

ively. In other words, the MSRMP consists of finding the vector of 

itigation mappings that allows for minimizing the overall impact 

esidues of the stakeholders. A solution of (3) is a vector 〈 μT 〉 T ∈T 
f mitigation mappings that is Pareto optimal (see, e.g., Marler and 

rora, 2004 ), i.e. it is such that if there does not exist another vec-

or 〈 μ′ 
T 
〉 T ∈T of mitigation mappings such that oir (s ) ≤ oir ′ ( s ) for 

ach s ∈ S and oir ′ ( s ) < oir (s ) for at least one s ∈ S where oir and

ir ′ are the overall impact residues under the family { μT } T ∈T and 

 μ′ 
T 
} T ∈T of mitigation mappings, respectively. 

We make two observations. First, (3) considers only the impact 

nd not the likelihood since, as already discussed earlier, we as- 

ume that the stakeholders in S agree on both the set T of threats 

nd their likelihood. As a consequence, minimizing the impact is 

quivalent to minimizing the risk since the latter is the product 

f impact and likelihood, and it is a constant and positive value 

or each stakeholder in S . This is a natural assumption to make in 

he context of the GDPR whereby the data controller is account- 

ble for the risk assessment and needs to guarantee that the risks 

f the data subject are kept to a minimum. The second observation 

s about solving (3) . Indeed, it is possible to re-use the cornucopia 

f techniques available for Multi Objective Optimization Problem 

MOOP); see, e.g., Marler and Arora (2004) . However, for some of 

he techniques to be applicable, it is crucial to have a definition of 

he functions i s and μT for T ∈ T in closed form. This is rarely the

ase for the use case scenarios we have in mind. Instead, experts 

re typically able to define both i s and μT as discrete functions, i.e. 

y associating a given impact level with a certain threat for i s and 

uantifying the amplitude of the mitigation associated to a given 

ontrol in C T for μT . The examples above present this kind of def- 

nitions for such functions by using tables. 

As a consequence of the two observations above, we make the 

ollowing assumptions. First, each stakeholder s in S provides a 

efinition of the mapping i s as a finite set of pairs of the form 

T , il ) where T is a threat in T and il is an impact level in a finite
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Fig. 2. The solution points. 
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et I of values (i.e., I = { 0 , 1 , 2 , 3 , 4 } where 0 denotes a negligi-

le impact, 4 a dramatic impact, and the values in between in- 

reasing values). Second, for each threat T in T , the stakeholder in 

harge of the risk management process (i.e., the data controller in 

he case of the GDPR) defines the mapping μT : C T → A with A a

nite set of values in the interval [0 . 1] ; in other words, μT is spec-

fied as a finite set of pairs of the form (c, p) where c is a control

n C and p is the amplitude of the mitigation of the impact of the 

hreat T when adopting the control c. For instance, we can take 

 = { 0 , 0 . 5 , 1 } , so that μT (c) = 0 means that control c has no ef-

ect in mitigating the threat T , μT (c) = 0 . 5 has partial effect on T ,

nd μT (c) = 1 has full effect. Under these assumptions, we obtain 

n instance of (3) that belongs to a particular class of MOOP called 

ulti Objective Combinatorial Optimization Problems (MOCOPs); 

ee, e.g., Klamroth (2009) . We observe that finding all Pareto opti- 

al solutions of such instances of (3) requires, in the worst case, to 

earch among �T ∈T (k |C T | − 1) candidate sets of controls for k = |A| 
he number of distinct real values in the co-domain of the map- 

ings μT for all T in T . The −1 in the expression considers that

t is never the case that all controls in C T will be adopted; this

s a reasonable assumption because of multiple reasons including 

ack of skills to manage several different technologies on which the 

ontrols are based and constraints in costs. Indeed, this implies the 

ecidability of the instances of the MSRMP that we consider in the 

est of the work. We observe that, despite their decidability, solv- 

ng these instances of the MSRMP may be quite a challenge from 

 computational point of view because the number of possible so- 

utions in which to search for the optimal ones is exponential in 

he size of C T for T ∈ T . In the rest of this section, we describe a

trategy to manage this problem and in Section 5.3 , we propose an 

xperimental evaluation of some refinements and study the scala- 

ility of the proposed approach in practice. 

xample 5. As described above, by considering k = 3 possible val- 

es for the mappings μT 1 
, μT 2 

, and μT 3 
introduced in Example 3, 

he search for finding optimal solutions is among �T ∈T (k |C T | − 1) = 

3 2 − 1) × (3 2 − 1) × (3 1 − 1) = 128 candidates. Note that we do 

ot consider the situation in which all controls are in place as this 

ould yield a risk equal to zero, thereby making the search for 

ptimal solutions trivial. This is reasonable in practice since, as al- 

eady observed, it is unlikely that the stakeholders will be able to 

dopt all security controls in {C T } T ∈T because of other constraints 

uch as those related to budget and required security skills for 

heir deployment. 

To simplify the solution of the instances of (3) , we consider an 

ssociated problem derived from (3) , by introducing a variable x T 
o replace 1 − m (T ) and obtain: 

in 〈 x T 〉 T∈T 〈 1 
|T | �T ∈T (i s (T ) ∗ x T ) 〉 s ∈S 

ubject to x T ∈ { 1 − m (T ) } for each T ∈ T (4) 

here m (T ) is the expression defined in 2 , 〈 x T 〉 T ∈T is the vector

f variables representing mitigation amplitudes when considering 

n arbitrary total order over T . For each threat T in T , we have

hat | { 1 − m (T ) } | is the number of distinct sum values, divided 

y the number of controls in C T , that can be obtained by adding

alues in I (that, in our examples, is the set { 0 , 0 . 5 , 1 } ) accord-

ng to a μT that induces a value m (T ) . The space of solutions of

he modified version of (4) , is thus �T ∈T |{ 1 − m (T ) }| which may

e remarkably less than �T ∈T (k |C T | − 1) . For instance, consider Ex- 

mple 3, the first two tables contain 8 different mitigation vectors 

ith only 4 different values for the function m (·) . 

xample 6. Recall Example 3, consider only the values of m (T ) 

hat are distinct, and derive the values x T = 1 − m (T ) for each

 ∈ { T , T , T } : 
1 2 3 

9 
m (T 1 ) x T 1 m (T 2 ) x T 2 m (T 3 ) x T 3 

0 1 0 1 0 1 

0.25 0.75 0.25 0.75 0.5 0.5 

0.5 0.5 0.5 0.5 

0.75 0.25 0.75 0.25 

The set of possible solutions of (4) is the set of all triples of the

orm 〈 x T 1 , x T 2 , x T 3 〉 whose values are taken from the three tables

bove and thus the size of such a set is 4 × 4 × 2 = 32 . Observe

hat this is one-fourth of the size of the set of potential solutions 

o the original problem (3) , namely �T ∈{ T 1 ,T 2 ,T 3 } (k |C T | − 1) = (3 2 −
) · (3 2 − 1) · (3 1 − 1) = 128 . For larger problem instances, the re- 

uction is much more substantial as we will see in Section 5.3 be- 

ow. By considering the 32 triples 〈 x T 1 , x T 2 , x T 3 〉 , we can derive the

alues of the overall impact values for the two stakeholders by 

ecalling that oir (s ) = ir s (T 1 ) + ir s (T 2 ) + ir s (T 3 ) , ir s (T ) = i s (T ) · (1 −
 (T )) from (1) , ( 2 , and x T = 1 − m (T ) for s ∈ { s 1 , s 2 } and for T ∈

 T 1 , T 2 , T 3 } . Also, recall that the definition of i s (·) can be found in

xample 4. The pairs ( oir (s 1 ) , oir (s 2 )) so computed are plotted in 

ig. 2 where the x-axis shows the values of oir (s 1 ) and the y-axis 

hose of oir (s 2 ) . 

It is then immediate to see that the point (0.35,0.485) at the 

ottom left (in green) is the Pareto optimal solution. We also ob- 

erve that the two points in orange are not dominated by any other 

oints but the optimal one. 

Indeed, it is possible to find solutions of (3) corresponding 

o those of the simplified version of (4) by adapting the proce- 

ure above. Let 〈 x ∗
T 
〉 T ∈T be a solution for (4) . By definition and

he simplifying assumption above, there must exist μ∗
T 

such that 

 

∗
T = 1 − m (T ) = 1 − �c∈C T μ∗

T 
(c) 

|C T | for each T ∈ T and it is thus im-

ediate to discover all the solutions of (3) . 

xample 7. We explain how it is possible to derive the sets of con- 

rols associated to a certain triple 〈 x ∗
T 1 

, x ∗
T 2 

, x ∗
T 3 

〉 . To illustrate, we

onsider the (orange) point in Fig. 2 with coordinates (0.4,0.61) 

hat is associated to the triple 〈 x ∗
T 1 

, x ∗
T 2 

, x ∗
T 3 

〉 = 〈 0 . 25 , 0 . 5 , 0 . 5 〉 . From

2) and x T = 1 − m (T ) , it is immediate to derive that 

μT 1 ( c 1 ) + μT 1 ( c 2 ) 

2 

= 1 − x ∗T 1 
μT 2 ( c 3 ) + μT 2 ( c 4 ) 

2 

= 1 − x ∗T 2 
μT 3 ( c 5 ) = 1 − x ∗T 3 
1 
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o that we are left with the problem of enumerating all mitiga- 

ion mappings μT 1 
(·) , μT 2 

(·) , μT 3 
(·) satisfying the three equalities 

bove. The following table lists all possible such mappings: 

x ∗T 1 = 0 . 25 x ∗T 2 = 0 . 5 x ∗T 3 = 0 . 5 

μT 1 (c 1 ) μT 1 (c 2 ) μT 2 (c 3 ) μT 2 (c 4 ) μT 3 (c 5 ) 

S 1 1 0.5 0.5 0.5 0.5 

S 2 0.5 1 0.5 0.5 0.5 

S 3 1 0.5 1 0 0.5 

S 4 0.5 1 1 0 0.5 

S 5 1 0.5 0 1 0.5 

S 6 0.5 1 0 1 0.5 

The obvious question is the computational complexity of enu- 

erating all possible mitigation mappings μT (·) such that 

�c∈C T μT (c) 

|C T | = 1 − x ∗T (5) 

or each T ∈ T ; notice that the three equalities in Example 7 are

nstances of (5) . Indeed, if there exists a (practically) efficient al- 

orithm to enumerate the mitigation mappings satisfying (5) , we 

an hope that solving instances of (4) and then using such an al- 

orithm to derive the corresponding solutions of (3) is an efficient 

lternative to solving directly the latter as the number of the pos- 

ible solutions of (4) is smaller (as we have seen in Example 6 and

ven substantially so as we will see in Section 5.3 ) than those of

3) . 

To answer this question, we consider the Subset Sum Problem 

SSP) with multiplicities ( Cormen et al., 2001 ), i.e. given a mul- 

iset X of integers and an integer s , does any non-empty multi- 

ubset of X sum to s ? Solving the instances of (5) for each T ∈ T 
s equivalent to solving an instance of the SSP under the natu- 

al assumption that x ∗
T 

and the values in A are real numbers that 

an be represented as v · 10 −d for v and d positive integers such 

hat 0 < v · 10 −d < 1 . To see this, observe that all the values in

 ∪ { 1 − x ∗T } can be transformed to integers by multiplying each 

ne by their maximum exponent d when represented as v · 10 −d , 

he integers so obtained from the values in A are added to the 

ultiset X , each one with multiplicity equal to the number of con- 

rols in C T for T ∈ T , and the integer obtained from 1 − x ∗
T 

is set to

 . Several different algorithms are available to solve this problem 

ith different complexities ranging from exponential to (pseudo- 

polynomial (see, e.g., Cormen et al., 2001 ). The most naive algo- 

ithm (with exponential worst-case complexity) amounts to cycling 

hrough all multisubsets of X and, for each one, check if it sums 

o s . To solve the SSP, it is possible to stop as soon as one solu-

ion is found, but in our case, we need to find all possible solu- 

ions. Indeed, the naive algorithm can be trivially adapted to do 

his, resulting in exponential best-case and worst-case complexity. 

espite being in such a complexity class, the naive algorithm turns 

ut to give satisfactory results in practice because the instances 

erived from (5) are typically small because the cardinality of C T 
s relatively small for each T ∈ T or can be reduced by exploiting

he knowledge of security experts. We will discuss this issue in 

ection 5 below. 

. Defining instances of the MSRMP 

Our main goal is to assist in the identification of the best 

ossible set of controls to minimize the risk for all stakeholders. 

his has been formalized as solving an appropriate instance of 

he MSRMP introduced in Section 3.2 . To specify instances of the 

SRMP in either statement (3) or (4) , we consider additional infor- 

ation that is typically available in many methodologies for risk 

ssessment. In the rest of this section, we first ( Section 4.1 ) con-

ider the problem statement (4) and discuss an approach to derive 
10 
he risk residue i s for each stakeholder s that yields a problem with 

 reduced search space whose solutions can be used to derive op- 

imal mitigation mappings as explained at the end of Section 3.2 . 

e will see that this approach requires the stakeholder s to take 

everal decisions that are highly subjective and this may lead to 

ias. Then ( Section 4.2 ), we propose an approach that aims to re- 

uce the level of subjectivity in defining the risk residue i s that 

equires to consider the general problem statement (4) . We will 

iscuss how also in this case it is possible to first solve a prob- 

em with a reduced search space and then to derive optimal mit- 

gation mappings. Both approaches require to identify a set S of 

takeholders, a set T of threats, a family { C T } T ∈T of sets of controls 

each one associated to a threat T ∈ T ), and be able to define the 

apping i s that quantifies the impact level for each stakeholder 

 ∈ S and the residual risk x T for each threat T that results from 

pplying a certain set of controls (or, equivalently, from selecting 

 certain mitigation mapping μT ). The approaches presented in 

ections 4.1 and 4.2 differ in the definition of i s . For this reason,

e preliminary consider the definitions of the other parameters, 

amely T , { C T } T ∈T , and x T . 

As reviewed earlier, the literature lists several approaches 

e.g., Shostack, 2014; Wuyts and Joosen, 2015 ) dealing with threat 

dentification together with appropriate mitigation controls that al- 

ow us to define the set T of threats and the family {C T } T ∈T of sets

f controls associated to the threats in T . The decision to select 

 method or another depends on the specific needs and specific 

oncerns (see, e.g., the discussion in Shevchenko et al. (2018) ). For 

nstance, Microsoft STRIDE ( Shostack, 2014 ) is a well-established 

hreat modeling to identify security threats according to a pre- 

efined classification of threat types. It is an acronym for Spoof- 

ng, Tampering, Repudiation, Information Disclosure, Denial of Ser- 

ice, and Elevation of privilege . These threat types represent the 

iolation of the primary security properties: authentication, in- 

egrity, non-repudiation, confidentiality, availability, and authoriza- 

ion. LINDDUN ( Wuyts and Joosen, 2015 ) is another well-known 

hreat modeling approach to identify privacy threats, and it is an 

cronym for Linkability, Identifiability, Non-repudiation, Unawareness, 

etectability, Disclosure of information, and Non-compliance . Similar 

o STRIDE, also, these represent violations of properties character- 

zing different dimensions of privacy. For concreteness, an instance 

f the set T is shown in Table 2 and an instance of the family

 C T } T ∈T can be found in the first two columns of Table 3 (for in-

tance, consider T 4 = Denial of service , C T 4 is associated with three 

ontrols, namely Enabling off-line authentication, Network monitor- 

ng , and Prevention mechanisms for DoS attacks like firewalls, etc. ); 

oth are related to the running example introduced in Section 3.1 . 

or the applicability of the method proposed in this work, any 

ethodology that allows for the definition of T and { C T } T ∈T can 

e used. 

We are left with the problem of defining i s for s ∈ S and x T for

 ∈ T . Concerning the latter, recall that according to (4) and (1) ,

he risk residue x T ∈ { 1 − m (T ) } with m (T ) = 1 − �c∈C μT (c) 
|C T | , i.e. x T 

s the risk residue obtained by applying a certain combination of 

he security controls available in C T for the threat T according to 

he mitigation mapping μT . Recall also that μT (c) measures the 

mpact of T after applying control c ∈ C T and thus m (T ) measures

he aggregated mitigating effect of selecting a given set of controls 

n C T on the risk of T materializing (under the assumption that the 

itigations are independent of each other). The third and fourth 

olumns of Table 3 show a given mitigation mapping μT and the 

ssociated value x T of the resulting risk residue. It will be the task 

f an automated solver to explore the space of all possible val- 

es of x T and find those that are Pareto-optimal solutions of the 

SRMP instance (4) so that it is possible to derive the optimal 

itigation mappings as described at the end of Section 3.2 ; see 



M. Mollaeefar and S. Ranise Computers & Security 129 (2023) 103206 

Table 4 

The assigned impacts to each stakeholders’ preferences for each threat in our scenario. 

Stakeholders 

( S) 

Protection 

Criteria ( P) 

Weights 

PW 

s 
p 

Aversion level ( al 
s 
p ) 

T 1 T 2 T 3 T 4 T 5 

Data 

Subject 

Health 

condition 

0.4 0 4 0 3 4 

Individual 

freedom 

0.2 0 2 4 3 3 

Social 

situation 

0.3 1 2 3 0 3 

Financial 

situation 

0.1 0 3 1 0 3 

Data 

Controller Reputational 

situation 

0.4 1 2 3 2 2 

Financial 

situation 

0.6 2 2 3 3 2 
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4

d  
ection 4.1 ). As already said above, we will see that finding opti- 

al values for x T is crucial also for solving instances of the general 

roblem statement (3) ; see Section 4.2 . 

.1. Defining impacts levels according to stakeholders: A first attempt 

Different stakeholders have different criteria that define what 

hey consider risky. Data controllers (e.g., companies) typically 

hoose business impact criteria, such as financial impact or repu- 

ation, whereas data subjects (e.g., individuals) evaluate risk based 

n impact on their personal sphere. For the running example in- 

roduced in Section 3.1 , we consider the social situation, individ- 

al freedom, financial situation ( Oetzel and Spiekermann, 2014 ), and 

ealth condition as the data subject protection criteria while for 

he data controller, reputational situation and financial situation are 

he protection criteria, which are linked to indirect or direct pe- 

uniary losses. Additionally, each stakeholder has different prefer- 

nces, which result in different importance given to different crite- 

ia; e.g., in the running example, the health condition criterion is 

ore momentous than others for patients. We capture these high- 

evel stakeholder preferences by assigning a weight to each stake- 

older’s protection criterion. The associations among stakehold- 

rs, protection criteria, and weights are shown in the first three 

olumns of Table 4 . Formally, we assume the availability of a set P
f protection criteria, a family { P W 

s 
p } p∈P,s ∈S of weights associated 

o a preference p for each stakeholder s besides the definitions of 

 , {C} T ∈T , and x T for T ∈ T as discussed above in this section. 

The additional information in P and { P W 

s 
p } p∈P,s ∈S are used to 

efine the impact level i s by giving a quantitative evaluation of the 

egative influence that a threat T ∈ T may have on a preference 

p ∈ P for a certain stakeholder s ∈ S . The intuition is to charac- 

erize how each threat is perceived as more or less dangerous by 

ach stakeholder in relation to his/her own protection criteria. For 

nstance, in the context of the running example, it is very unlikely 

hat excessive storage of patients’ health data would damage the 

ata controller’s reputation; by increasing stored data, there is fi- 

ancial damage on the data controller cause of cost of storage and 

anagement of the IT infrastructure. On the other hand, the rep- 

tation of patients is not affected by excessive storage of personal 

ata; indeed, a larger amount of stored data increases the impact 

f data breaches and leaks on the rights and freedoms of patients. 

or this, we assign an impact value in IL (recall that this set typ- 

cally contains a finite set of integer values from 0 to 4 included) 

o the level of aversion that each stakeholder s has for a threat T 

cting on a given protection criterion p. Formally, we assume the 

efinition of an aversion mapping al 
s 
p : P → IL for each preference 

p ∈ P and stakeholder s ∈ S . At this point, we are in the position 

o define i s by combining the weight P W 

s 
p and the mapping al 

s 
p as 
11 
ollows: 

 s (T ) = 

1 

| il max | 
∑ 

p∈P 
al 

s 
p (T ) × P W 

s 
p (6) 

here il max ∈ IL represents the maximum impact level (in our 

ase, it is 4). The crux to specify i s is thus to define the family

 al 
s 
p } p∈P,s ∈S of aversion mappings. This can be done as shown in 

he fourth column of Table 4 where each threat T ∈ T gets an aver-

ion level al 
s 
p between 0 and 4 (recall that 0 means no, 1 low, 

 moderate, 3 critical, and 4 catastrophic impact) for each pro- 

ection criterion p and stakeholder s . Intuitively, the values are 

ssigned by answering the question ”For the stakeholder s , what 

ould be the impact level on the criterion p if the threat T hap- 

en?” To illustrate, consider Table 4 in which the aversion level 

f the health condition for the second threat ( T 2 ) according to the 

ata subject ( s = DS ) is 4 and thus the value of i DS (T 2 ) will be
(0 . 4 ×4)+(0 . 2 ×2)+(0 . 3 ×2)+(0 . 1 ×3) 

4 = 0 . 725 according to (6) . 

To summarize, we have described an approach to define i s 
y assuming the capability of identifying protection criteria for 

ach stakeholder (i.e. being able to define the set P), of quanti- 

ying the relevance of each such criterion (in a scale between 0 

nd 1) for each stakeholder (i.e. being able to define the family 

 P W 

s 
p } p∈P,s ∈S ), and assigning an aversion level of each stakeholder 

hen a threat impacts a given protection criterion (i.e. defining 

he family { al 
s 
p } p∈P,s ∈S ). This allows us to define an instance of 

he MSRMP (4) which, as we will see in the following, can be 

olved by using available techniques and then, as described at the 

nd of Section 3.2 , to identify the set of Pareto optimal mitiga- 

ion mappings that minimize the risks with respect the various 

takeholders. However, we observe that it may be non-obvious to 

uantify the weights in { P W 

s 
p } p∈P,s ∈S and the aversion level map- 

ings in { al 
s 
p } p∈P,s ∈S as their definitions are quite subjective for 

ach stakeholder. This is somehow unavoidable because it is up 

o each stakeholder to define i s , however it is important to mit- 

gate possible bias that would make the solutions of the corre- 

ponding instance of the MSRMP (4) hardly useful in practice or 

ven detrimental because of an over or under estimation of the 

isk levels with negative business or privacy impacts, respectively, 

n some stakeholders. We can consider to assign the definitions 

f { P W 

s 
p } p∈P,s ∈S and { al 

s 
p } p∈P,s ∈S to two independent groups of ex- 

erts for each stakeholder so to mitigate possible bias. In the next 

ection, we describe a refined approach to define an instance of the 

SRMP (3) that aims to further reduce the level of subjectivity of 

ach stakeholder in defining i s . 

.2. A less subjective definition of impact levels 

Our goal is to reduce the level of subjectivity with which i s is 

efined. The idea is to refine the definition of i s given above by in-
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roducing a cross-weighting system to reduce bias resulting from 

takeholders as much as possible. Besides the availability of a set 

of protection criteria and a family { P W 

s 
p } p∈P,s ∈S of weights asso- 

iated to a preference p for each stakeholder s , we consider a set G
f protection goals which play a crucial role in identifying appro- 

riate security controls (see, e.g., Zwingelberg and Hansen, 2011 ). 

ndeed, Confidentiality, Integrity, and Availability are obvious can- 

idates to be included in the set G (see, e.g., Brooks et al., 2017 ).

owever, these are not enough to consider the complex protection 

equirements deriving from national and international legal provi- 

ions such as those concerning data protection contained in the 

DPR. For this reason, in the rest of the paper, we assume the set 

to contain the “data protection goals” introduced by the Standard 

ata protection Model (SDM) ( für Datenschutz, 2020 ). 

To systematize data protection requirements of the GDPR, the 

DM employs “protection goals”. The data protection requirements 

eek to ensure legal compliance processing, which technological 

nd organizational safeguards must ensure. The assurance con- 

ists in lowering the risk of deviations from legally compliant 

rocesses to a suitable degree. Unauthorized processing by third 

arties and the failure to carry out mandatory processing pro- 

edures are examples of deviations to avoid. The data protection 

oals combine and arrange the criteria for data protection re- 

uirements and can be operationalized through integrated, scalable 

easures ( für Datenschutz, 2020 ). These protection goals are 

G1. Confidentiality refers to the requirement that no person is 

allowed to access personal data without authorisation. 

G2. Integrity refers, on the one hand, to the requirement that 

information technology processes and systems continuously 

comply with the specifications that have been determined 

for the execution of their intended functions. On the other 

hand, integrity means that the data to be processed remain 

intact, complete, and up-to-date. 

G3. Availability is the requirement that personal data must be 

available and can be used properly in the intended process. 

Thus, the data must be accessible to authorised parties and 

the methods intended for their processing must be applied. 

G4. Unlinkability & Data minimization where the unlinkability 

goal refers to the requirement that data shall be processed 

and analysed only for the purpose for which they were col- 

lected, while the data minimization goal covers the funda- 

mental requirement under data protection law to limit the 

processing of personal data to what is appropriate, substan- 

tial and necessary for the purpose. 

G5. Transparency refers to the requirement that the data sub- 

ject as well as the system operators and the competent su- 

pervisory authorities can identify to a varying extent, which 

data are collected and processed for a particular purpose, 

and which systems and processes are used for this purpose, 

where the data flow to which purpose, and who is legally 

responsible for the data and systems in the various phases 

of data processing. 

G6. Intervenability refers to the requirement that the data sub- 

jects are effectively granted the right to notification, infor- 

mation, rectification, blocking and erasure at any time. 

The SDM have provided precise mappings between the GDPR 

equirements and these protection goals (for more details, see the 

able 3 on pages 28 to 30). These mappings can be interpreted 

s if threats adversely affecting these protection goals mean non- 

ompliance with the GDPR requirements. Working with protection 

oals simplifies the modeling of functional requirements in use 
3 The Standard Data Protection Model (SDM), https://www.datenschutzzentrum. 

e/uploads/sdm/SDM-Methodology _ V2.0b.pdf 

a  

a  

s

a  

12 
ases and the visualization of conflicts. They also enable the me- 

hodical application of legal requirements into technological and 

rganizational measures and are therefore “optimization require- 

ents”. We observe that our approach can be applied with other 

rotection goals, we consider those of für Datenschutz (2020) only 

or the sake of concreteness. 

The goal of the approach discussed below is twofold: (i) iden- 

ify how many goals each threat is impacting and (ii) measure the 

mplitude of the impact on each goal of a given threat. We start 

y considering (i). 

For example, a “Denial of service ” threat will intuitively have 

ore impact on the data availability goal rather than on the in- 

egrity goal; an “Identity theft ” threat will have more impact on the 

ata confidentiality goal. To keep track of this, we use a Threat- 

rotection Goals association as shown in the first two columns in 

able 5 where the “✕ ” (“-”) mark in a cell means the goal in the

olumn is affected (not affected, respectively) by the threat in the 

ow (the particular instance of the threat-protection goals associ- 

tion is related to the running example of Section 3.1 ). Intuitively, 

he more a threat impacts multiple goals, the more it is consid- 

red pervasive (e.g., threat T 2 is the most pervasive in Table 5 as it 

ffects 3 goals); the more a goal is impacted by multiple threats, 

he more it is considered scattered (e.g., goal G 1 is the most scat- 

ered in Table 5 as it impacts 3 threats). The third column of 

able 5 shows the so called Observation Weight 

W T = 

AG T ∑ 

T ∈T AG T 

(7) 

hat measures how much a threat T is pervasive for the goals in 

, where AG T is the number of goals in G affected by a threat T ∈
 . For example, in Table 5 , the observation weight OW T 1 

is 2 / 10 ,

here G 1 and G 4 are the two affected goals by T 1 , and the total

umber of affected goals is 10. 

We now consider objective (ii), namely to measure the ampli- 

ude of the impact on each goal of a given threat. This is necessary 

s soon as we realize that the information in Table 5 is not enough

lone to define i s because it may be the case that the impact value

an be much higher when a goal is impacted severely by a single 

hreat rather than when this is impacted by many threats but only 

ightly. We do this in two steps. First, we define the normalized 

hreat criticality level as 

T C T = 

OW T × x T ∑ 

T ∈T (OW T × x T ) 
(8) 

o quantify the severity of a threat T ∈ T (recall that x T is the im-

act residue of the threat T after applying the security controls ac- 

ording to a mitigation mapping μT ). Intuitively, NT C T is the level 

f danger of a threat T among all threats in T , or in other words,

he relative importance of T with respect to all other threats in T . 
By having obtained the observation weights (in Table 5 ) and 

he calculated x T values (in Table 3 ), the computed normalized 

hreat criticality values for T ∈ T are shown in the second column 

f Table 6 . 

The second step to achieve goal (ii) above is to use the nor- 

alized threat criticality level to weight the function i s defined in 

ection 4.1 when considering a certain protection goal G ∈ G for a 

iven stakeholder s so to define the overall impact residue as fol- 

ows 

ir (s ) = 

∑ 

G ∈G 

( ∑ 

T ∈T ξT,G × NT C T × i s (T ) 

#(T , G ) 

)
(9) 

here ξT,G is 1 when the threat T ∈ T compromises the goal G ∈ G
nd 0 otherwise; #(T , G ) is the number of threats in T that have

n impact on the goal G (this means that #(T , G ) = 

∑ 

T ∈T ξT,G ). Ob-

erve that the expression between parentheses in (9) can be seen 

s the average impact on a given goal G with respect to the threats

https://www.datenschutzzentrum.de/uploads/sdm/SDM-Methodology_V2.0b.pdf
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Table 5 

Affected protection goals by each threat and the observation weights in our scenario, G1 = Confidentiality, G2 = Integrity, G3 = 

Availability, G4 = Unlinkability & Data minimization, G5 = Transparency, and G6 = Intervenability. 

Threat 

Data Protection Goals Observation 

Weights 

(OW) G1 G2 G3 G4 G5 G6 

T 1 ✕ - - ✕ - - 2/10 

T 2 ✕ ✕ ✕ - - - 3/10 

T 3 ✕ - - ✕ - - 2/10 

T 4 - ✕ ✕ - - - 2/10 

T 5 - - - - - ✕ 1/10 

Table 6 

Threat criticality and impact level values together with the computed protection goals’ impacts for each threat for the 

data subject (DS) and the data controller (DC). 
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n T that are relevant to G . For instance, according to Table 5 , the

ntervenability goal ( G 6 ) is affected only by T 5 which means that

(T , G 6 ) is 1. According to Table 6 , the average impact of the con-

dentiality goal ( G 1 ) for the data subject is 0.074, while the same

alue for the data controller is 0.087. Finally, observe that since the 

ransparency goal ( G 5 ) is not affected by anyone of the threats (ac-

ording to Table 5 ), it is not mentioned in Table 6 neither used

or calculating the overall impact residue. By aggregating the im- 

act average of protection goals, the overall impact residue from 

he data subject’s point of view is oir ( DS ) = 0 . 549 , and for the data

ontroller is oir ( DC ) = 0 . 576 . 

At this point, we are in the position to define instances of the 

SRMP statement (3) by using (9) as the definition of the overall 

mpact residue rather than those proposed in Section 3.2 . We also 

bserve that by substituting the definition (8) to NT C T in the ex- 

ression of oir (s ) , it is easy to see that we can derive a MSRMP

imilar to (4) , i.e. considering x T as variables rather than μT for 

 ∈ T , for which it is possible to apply the same technique dis-

ussed at the end of Section 3.2 that allows us to solve an opti-

ization problem over a smaller search space and then derive op- 

imal solutions for the original problem. 

. Implementation and experimental evaluation 

To validate the applicability of the proposed methodology, we 

ave implemented a tool able to assist in defining an instance of 

he MSRMP as discussed in Section 4 and performed two sets of 

ests in order to experimentally evaluate the practicality of our ap- 

roach 

4 . 

The goal of the tool is two-fold, namely (i) assisting in the def- 

nition of an instance of the MSRMP and (ii) automatically solving 

he resulting instance. The architecture of the tool is illustrated in 

ig. 3 ; the modules are implemented in Java, while the documents 

se JSON as the data representation format. The tool operates in 

wo phases (see outer boxes in the figure) and assumes the avail- 
4 The code of the tool and the material to replicate the experiments are available 

t https://github.com/stfbk/MSRMP 

T

s

t

13 
bility of the sets of stakeholders S , threats T , security controls 

, protection criteria P together with their weights { P W 

s 
p } p∈P,s ∈S , 

nd goals G; the first three are discussed in Section 3.2 , the 

ourth in Section 4.1 , and the last in Section 4.2 . The architec- 

ure also reports how tabular definitions of the various entities 

an be given; for instance, the set T of threats can be defined as 

n Table 2 and the set P of protection goals together with their 

eights { P W 

s 
p } p∈P,s ∈S as in Table 4 . We assume that these in- 

uts are derived from the application of available and well-known 

echniques for risk assessment, as already discussed above; our 

pproach is agnostic with respect to the particular methodology 

sed. The tables specifying the inputs above are encoded in JSON 

ormat. 

The first phase is semi-automated and a preliminary step to 

he definition of an instance of the MSRMP. More precisely, it de- 

nes the association between controls and threats {C T } T ∈T (see 

ection 3.2 ), the aversion level mapping al 
s 
p for each protection cri- 

eria p ∈ P and stakeholder s ∈ S (see Table 4 in Section 4.1 ), and

he observation weight OW T for each threat T ∈ T ; see last col- 

mn of Table 5 whose value is derived according to (7) . The first

wo outputs of this phase are obtained with human intervention 

s the user needs to identify which security controls are effective 

or each threat and which is the level of aversion of each stake- 

older for a given protection criteria to be violated, whereas the 

ast one is automatically derived after the user has specified which 

oals are affected by each threat. 

The second phase is fully automated and aims to define and 

olve an instance of the MSRMP. This requires to use the outputs of 

he first phase to define the impact level mapping i s for each stake- 

older s ∈ S; see Section 3.2 ) along the lines of Section 4.1 and

hen the overall impact residue oir as discussed in Section 4.2 . At 

his point, the tool has fully defined an instance of the MSRMP 

3) and it is left with the task of solving it. For this, it needs to

numerate all risk residues x T for each threat T ∈ T by using the

pproach in Section 4 to define Table 3 , derive the Normalized 

hreat Criticality values for the various threats, and then adapt the 

trategy discussed at the end of Section 3.2 to identify the mitiga- 

ion mappings that are Pareto optimal. 

https://github.com/stfbk/MSRMP
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Fig. 3. Architecture of the implemented tool. 
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We observe that there are multiple possible strategies to com- 

ine the enumeration of risk residues and the identification of 

areto optimal values. For instance, one can first compute the en- 

ire set of feasible solutions and only after look for Pareto optimal 

nes or one can imagine to interleave the two activities by com- 

uting the Pareto optimal values in different subsets of the whole 

et of feasible solutions and then select those solutions that are 

areto optimal for the entire search space. Below, we first discuss 

he computational behavior of the second phase on the running 

xample in Section 3.1 and then design two sets of tests to under- 

tand which is the most promising strategy to identify the set of 

areto Optimal risk residues or, equivalently, mitigation mappings. 

.1. Applying the prototype tool on the running example 

We discuss the results of applying the second phase of our 

ethodology, as implemented in the prototype tool, on the run- 

ing example of Section 3.1 . First, the tool computes the whole 

et of possible solutions whose cardinality is 57,600; this is as ex- 

ected from the formula �T ∈T | X T | = | X T 1 | × | X T 2 | × | X T 3 | × | X T 4 | ×
 X T 5 | = 10 × 20 × 8 × 6 × 6 = 57 , 600 presented in Section 3.2 (see

xample 6). This takes around 2.1 s on a machine with 16 GB of 

AM and a 1.90 GHz CPU. Each solution is a pair containing the 

isk residue values for the Data Subject (DS) and the Data Con- 

roller (DC). Figure 4 shows the set of possible solutions plotted on 

 Cartesian plane whose x-axis shows the risk residue of DS and 

he y-axis that of DC. By looking at the figure, it is immediate to 

ee that the optimal solution is that on the bottom left—whose risk 

esidue values are 0.2260 for DS and 0.4168 for DC— as it dom- 

nates all other solutions. The tool takes around 2.2 s to identify 

his point as the best one. 
14 
After identifying the risk residue levels, one is left with the 

roblem of computing the set of RMPs that generate such values. A 

ethod to do this has been illustrated at the end of Section 3 and

mplemented in the tool that takes less than 3 s to identify the 

ollowing tuple 

 x ∗T 1 , x 
∗
T 2 

, x ∗T 3 , x 
∗
T 4 

, x ∗T 5 〉 = 〈 1 , 0 . 05 , 0 . 125 , 0 . 16 , 0 . 16 〉 
orresponding to (0 . 2260 , 0 . 4168) and then to identify all the

MPs associated to the above tuple of x T values for T ∈ 

 T 1 , T 2 , T 3 , T 4 , T 5 } . By recalling (5) and that A = { 0 , 0 . 5 , 1 } , it is

ot difficult to see that there are 360 = 1 × 10 × 4 × 3 × 3 distinct

MPs associated to the tuple of x T values above since 

• there is just one mitigation mapping satisfying 

�c∈{ c 1 , ... ,c 5 } μT 1 (c) 

5 

= 1 − x ∗T 1 = 0 

as the values in A are non-negative values; 

• there are 10 mitigation mappings satisfying 

�c∈{ c 6 , ... ,c 15 } μT 2 (c) 

10 

= 1 − x ∗T 2 = 0 . 95 

as the only way to get 9.5 by adding 10 values from A is to

have nine of them equal to 1 and the remaining one to 0.5; 

• there are 4 mitigation mappings satisfying 

�c∈{ c 16 , ... ,c 19 } μT 3 (c) 

4 

= 1 − x ∗T 3 = 0 . 875 

as the only way to get 3 . 5 = 4 × 0 . 875 by adding 3 values from

A is to have three of them equal to 1 and the remaining one to

0.5; 
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Fig. 4. All feasible solutions (i.e., the search space) in the running example scenario. 
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• there are 3 mitigation mappings satisfying 

�c∈{ c 20 , ... ,c 22 } μT 4 (c) 

3 

= 

�c∈{ c 23 , ... ,c 25 } μT 5 (c) 

3 

= 1 − x ∗T 4 = 1 − x ∗T 5 = 0 . 84 

as the only way to get 3 . 5 = 3 × 0 . 8 by adding three values

from A is to have two of them equal to 1 and the remaining

one to 0.5. 

The tool mechanizes the observations above and computes the 

et of security controls associated to the Pareto optimal solutions 

y solving a variant of the Sum Subset Problem (SSP) in which 

ultisets are considered instead of sets as explained at the end 

f Section 3.2 . Indeed, this is so because a mitigation mapping μT 

ssociates a control of C T with a value in A = { 0 , 0 . 5 , 1 } for each

 ∈ T and nothing prevents two or more controls to be mapped to 

he same value in A . Since all solutions to the SSP should be iden-

ified to be able to enumerate all possible mitigation mappings, the 

lgorithm is exponential in the number of security controls asso- 

iated to each threat, i.e. in the cardinality of C T for T ∈ T . Since

uch a number is typically low (on average around 5 and at most 

0 in our experience), the time consumption is quite reasonable 

n practice being around half a second at most for a single threat 

 ∈ T . To conclude the discussion, the third column of Table 7 re-

orts three mitigation mappings associated to the optimal solution 

onsidered above. Notice that all mitigation mappings associated 

o the optimal solution above suggest to avoid implementing any 

ecurity control for threat T 1 . This is a consequence of the impact 

efined in Table 4 that makes T 1 relevant only for the social sit- 

ation of the DS while it is negligible for all other aspects. Given 

his remark, one may decide to modify the values to increase the 

mpact of T 1 for the DS and then re-run the analysis. This is a clear

dvantage of having a high level of mechanization of our method- 

logy. 

Indeed, the running example is simple and poses no challenges 

o our prototype implementation. To understand the scalability of 

he proposed approach, we have designed a set of synthetic opti- 

ization problems whose sets of potential solutions is increasingly 

arge and then experiment with two different strategies to gener- 

te and visit such a set in the process of identifying Pareto optimal 

olutions. This is reported in Sections 5.3 below. 
15 
.2. Tuning MSRMP instances by means of constraints 

Constraints may allow for the introduction of additional re- 

uirements. For instance, security experts may consider a certain 

et of security controls mandatory for a particular use case sce- 

ario and be interested in understanding which additional security 

ontrols are optimal once added to those already selected. As an 

nother example, one may introduce risk thresholds for some or all 

f the stakeholders in the MSRMP. Other constraints can be added 

o create particular instances of the MSRMP, thereby showing the 

exibility of our methodology and the advantages of reducing the 

SRMP to a constraint optimization problem. Below, we give more 

etails about how the methodology can handle the two cases dis- 

ussed above. 

Fixed set of controls . Let us consider the situation de- 

cribed in Section 5.1 that is related to the running example of 

ection 3.1 and assume that the set { c 1 , c 6 , c 16 , c 20 , and c 23 } of

ecurity controls is fixed. This means that a constraint c in such 

 set should be such that μT (c) = 1 in any of the Pareto optimal

olutions returned by the solver. This means that for threat T 1 , the 

ontrol c 1 must always be considered, which has a 1 / 5 contribu- 

ion (5 is the total number of controls for T1) in reducing the im- 

act of T 1 . Therefore, the residual impact level x ∗
T 1 

for T 1 will be

n the range [1 − (4 . 5 / 5) , 1 − (1 / 5)] = [0 . 1 , 0 . 8] whereas it was

n the range [0 . 1 , 1] when the security control c 1 was not fixed a

riori . We can reason in a similar way the effect of fixing the re-

aining controls on the residual impact levels: x ∗T 2 ∈ [0 . 05 , 0 . 9] ,

 

∗
T 3 

∈ [0 . 125 , 0 . 75] , x ∗
T 4 

∈ [0 . 16 , 0 . 84] , and x ∗
T 5 

∈ [0 . 16 , 0 . 84] . No-

ice that fixing security controls reduces the number of feasible 

olutions among which to search for the optimal ones. Indeed, 

t is easy to see that the cardinality of the set of feasible so- 

utions is �T ∈T | X T | = | X T 1 | × | X T 2 | × | X T 3 | × | X T 4 | × | X T 5 | = 8 × 18 ×
 × 4 × 4 = 13 , 824 which is much smaller than 57,600 when no

ecurity controls was fixed. The obvious by-product of this is that 

lso the computation time and memory occupation are reduced. 

Setting risk thresholds . Let us consider again the same situa- 

ion described in above and consider that some stakeholders are 

illing to accept that their residual risk levels are contained in a 

ertain range. This requirement can be specified by adding to the 

SRMP instance constraints of the form l s 
1 

≤ x ∗T ≤ l s 
2 

for appropri- 

te lower l s 
1 

and upper l s 
2 

bounds and stakeholder s ∈ S (when the 

ower bound is not specified, it is possible to take l s 
1 

= −∞ and

imilarly when the upper bound is not specified, set l s 
2 

= ∞ ). 
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Table 7 

Examples of mitigation mappings associated to the optimal solution in Fig. 4 . 

Threats (T ) Controls {C T } T∈{ T 1 ,T 2 ,T 3 ,T 4 ,T 5 } Possible Mitigation Combinations x ∗T 

T 1 c 1 ) Purpose specification 1 

c 2 ) Ensuring limited data processing 

c 3 ) Ensuring purpose related processing 

c 4 ) Ensuring data minimization 

c 5 ) Enabling data deletion 

T 2 c 6 ) Ensuring data subject authentication 0.05 

c 7 ) Ensuring staff authentication 

c 8 ) Ensuring device authentication 

c 9 ) Logging access to personal data 

c 10 ) Performing regular privacy audits 

c 11 ) Ensuring data anonymization 

c 12 ) Providing confidential communication 

c 13 ) Providing usable access control 

c 14 ) Ensuring secure storage 

c 15 ) Ensuring physical security 

T 3 c 16 ) Providing confidential communication 0.125 

c 17 ) Logging access to personal data 

c 18 ) Ensuring data subject authentication 

c 19 ) Ensuring data anonymization 

T 4 c 20 ) Enabling offline authentication 0.16 

c 21 ) Network monitoring 

c 22 ) Prevention mechanisms for DoS attacks like firewalls, etc. 

T 5 c 23 ) Informing data subjects about data processing 0.16 

c 24 ) Handling data subject’s change requests 

c 25 ) Providing data export functionality 

Table 8 

Pareto’s solutions with the defined risk threshold. 

Pareto Solutions Data Subject Data Controller

S 1 0.4514 0.5518 

S 2 0.4503 0.5536 

S 3 0.4504 0.5530 

S 4 0.4520 0.5501 

S 5 0.4516 0.5502 

S 6 0.4505 0.5525 
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For example, we set the threshold risk exposure level for the 

ata subject and the data controller to 0.45 and 0.55, respectively, 

eaning that these stakeholders are willing to accept residual risk 

evel above such values. To compare with the situation without any 

hreshold constraints in which only one Pareto solution is identi- 

ed (as we described above in Section 5.1 ), while in this case, 6

areto solutions are identified as reported in Table 8 . 

.3. Experimental results 

This section undertakes some experimental evaluations to ex- 

mine the scalability of proposed methodology through the imple- 

ented tool. Hence, we present two test cases to assess the com- 

utational time and resources in the following. Since the instances 

f the variant of the SSP required to enumerate all possible miti- 

ation mappings corresponding to each Pareto optimal solution of 

he form 〈 x T 〉 T ∈T are typically small, their solution does not con- 

ume a relevant amount of resources (both time and memory) and 

hus we disregard this activity in the discussion below. 

.3.1. Test 1: Upfront computation of feasible solutions 

The goal of the first set of tests is to evaluate the strategy of 

omputing the set of feasible solutions upfront and then identify 

hose that are Pareto optimal. The idea is to understand the time 

nd memory occupation required to do this while increasing the 

umber of threats and the number of security controls per threat. 

e consider two stakeholders (i.e. |S| = 2 ), the protection criteria 

are the same as those in Table 4 , the number of protection goals 

re 6 as those introduced in Section 4.2 , an increasing number 
16 
T | = 5 , 6 , 7 , 8 of threats, and a number q = 4 , 5 of security control

ssociated with each threat so that |C T | = q ∗ 5 , q ∗ 6 , q ∗ 7 , q ∗ 8 .

or each one of these configurations, we measure the time (in sec- 

nds) and the memory occupation (in GB of heap) taken to com- 

ute the entire set of feasible solutions when running our proto- 

ype on a cluster with a CPU of 3.2 GHz and 500 GB of RAM. We

o not include the time to identify the Pareto Optimal solutions as 

he resource consumption for computing the feasible set of solu- 

ions (see the last two columns of Table 9 ) clearly shows the expo- 

ential behavior for both computation time and memory occupa- 

ion despite the dramatic reduction in the search space (consider 

he values in the column Reduction Factor) obtained by using the 

pproach of solving with respect to risk residues in place of miti- 

ation mappings discussed at the end of Section 3.2 . 

.3.2. Test 2: Interleaving the computation of feasible and optimal 

olutions 

The first test set clearly shows that the upfront computation of 

he whole set of feasible solutions does not scale. For this reason, 

e designed a different approach whereby the two activities are 

nterleaved by computing non-overlapping sub-sets of the feasible 

olutions and then identify those that are Pareto Optimal. As al- 

eady observed, this can be done in different ways and we propose 

wo strategies both parameterized by the size d of the sub-set of 

easible solutions that are being considered. 

• In the first strategy, we collect the Pareto Optimal solutions 

identified in each sub-set with cardinality d of the set of fea- 

sible solutions in a list � and once the entire set of feasible so- 

lutions has been covered, the list � is processed to extract the 

final set of Pareto Optimal solutions. 

• The second strategy is similar to the previous one except for 

the fact that the content of the list � of Pareto Optimal solutions 

for a given sub-set of the set of feasible solutions is added to 

the next sub-set of feasible solutions to be considered so that, 

when considering the last sub-set, we identify the final set of 

Pareto Optimal solutions. 

To study the scalability in terms of resource consumption of 

hese two strategies, we define a second test set with the same 

arameters of the previous one except for |T | = 6 , 7 , 8 , 9 and the
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Table 9 

Experimental results of Test 1. Legend: Reduction Factor, Computation Time is in Seconds (S), and the maximum Heap Size 

is in Gigabyte (GB). 

|T | |C T | 
Solution Set Size Reduction 

Factor 

Computation 

Time (S) 

Heap Size 

(GB) 
�T∈T (k |C T | − 1) �T∈T | X T | 

5 20 32 , 768 · 10 5 32,768 10 5 0.312 ∼0.25 

6 24 262 , 144 · 10 6 262,144 10 6 1.2 ∼1.5 

7 28 2 , 097 , 152 · 10 7 2,097,152 10 7 9.7 ∼12 

8 32 16 , 777 , 216 · 10 8 16,777,216 10 8 237 ∼29 

5 25 ∼ 8 . 29 · 10 11 100,000 ∼ 8 . 29 · 10 6 0.626 ∼0.5 

6 30 ∼ 2 . 01 · 10 14 1,000,000 ∼ 2 . 01 · 10 8 3.7 ∼9 

7 35 ∼ 4 . 86 · 10 16 10,000,000 ∼ 4 . 86 · 10 9 105 ∼28 

8 40 ∼ 1 . 17 · 10 19 

100,000,000 

∼ 1 . 17 · 10 11 2787 ∼416 

Table 10 

Experimental results based on the two defined strategies. 

Test 

Case |T | |C T | 
Computation Time (Second) and RAM Heap Size (Megabyte) 

d = 8 d = 64 d = 512 d = 4,096 d = 32,768 d = 262,144 

Strategy1 6 24 4.7(S), 308(MB) 2.5(S), 256(MB) 2.7(S), 256(MB) 3.7(S), 320(MB) 11.3(S), 499(MB) 6.8(S), 2,422(MB) 

7 28 95.5(S), 986(MB) 8.1(S), 382(MB) 8.7(S), 256(MB) 10.7(S), 459(MB) 15.8(S), 900(MB) 357(S), 2,509(MB) 

8 32 2,098.4(S), 1,282(MB) 71(S), 308(MB) 52(S), 308(MB) 62.5(S), 497(MB) 159.5(S), 1,004(MB) 317.5(S), 3,500(MB) 

9 36 T /O 7,346.7(S), 533(MB) 541.3(S), 308(MB) 560(S), 522(MB) 575.9(S), 1575(MB) 5,124.9(S), 3,812(MB) 

Strategy 2 6 24 2.5(S), 256(MB) 4.5(S), 256(MB) 2.7(S), 256(MB) 3.9(S), 308(MB) 5.6(S), 826(MB) 7.2(S), 2,405(MB) 

7 28 10.7(S), 256(MB) 10.7(S), 256(MB) 12.7(S), 256(MB) 8.9(S), 525(MB) 10.9(S), 1,037(MB) 60.9(S), 2,471(MB) 

8 32 68.7(S), 256(MB) 83.3(S), 256(MB) 70.9(S), 256(MB) 58.3(S), 256(MB) 64.7(S), 1,186(MB) 108.9(S), 4,066(MB) 

9 36 567.3(S), 256(MB) 557.2(S), 308(MB) 507.6(S), 308(MB) 553.7(S), 408(MB) 555.8(S), 1,513(MB) 934(S), 4,066(MB) 
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umber of security controls q associated to each threat is 4. We 

onsider increasing values of d = 8 h for h = 1 , 2 , 3 , 4 , 5 , 6 to under-

tand how the cardinality of the sub-set of the feasible solutions 

ffect performances. As for the previous test set, we measure the 

iming (in seconds) and the heap occupation (in MB) with a time 

ut (T/O) of 3 h. As the results—obtained on a personal computer 

ith a CPU of 1.90 GHz and 16 GB of RAM—in Table 10 shows,

he scalability is much improved with respect to the results of the 

rst test above, regardless of the strategy adopted to identify the 

areto Optimal solutions. It is worth noticing that for this test set 

e consider a less powerful computer and include the computa- 

ion for identifying the Pareto Optimal solutions. Although there 

s no clear winner between the two strategies described above, a 

loser analysis of the results in Table 10 shows that the second 

trategy is better than the first one in most cases and in particular 

or larger instances of the MSRMP; for example, consider the test 

ase with 8 threats and d = 8 , the computation time and the max-

mum heap space used by the first strategy are 2,098.4 s and 1,282 

B, whereas those used by the second strategy are 68.7 s and 256 

B. We observe that setting an appropriate value for the parame- 

er d (neither too small nor too large) seems to be crucial for the 

iming behavior of first strategy while the second strategy seems 

o be much less independent; unsurprisingly, for the memory oc- 

upation, larger values of d corresponds to larger heap sizes but 

uch less than those of the first test set (notice that the numbers 

n Table 9 are in GB whereas those in Table 10 are in MB). 

Discussion on experiments There are two main lessons learned 

rom the experiments discussed above. First, the transformation of 

he original MSRMP (3) over 〈 μT 〉 T ∈T into the one (4) over the 

 x T 〉 T ∈T allows for a substantial reduction of the search space. To 

ee this, consider the Reduction Factor in Table 9 . Second, consid- 

ring the family C T ∈T of controls associated to each threat T ∈ T is

rucial, in practice, to reduce the search space of the problem of 

ransforming back a solution 〈 x ∗
T 
〉 T ∈T of (4) into the set {〈 μT 〉 T ∈T }

f associated mitigation mappings of the original MSRMP (3) . This 

s so because the cardinality of C T is usually low for each T ∈ T so

hat, despite the exponential complexity as discussed at the end of 
17
ection 3.2 , the time and memory consumption are reasonable in 

ractice. 

. Conclusions and future work 

We have introduced the Multi-Stakeholder Risk Minimization 

roblem (MSRMP) to assist in the definition of the best (with re- 

pect to all the stakeholders involved in the system) Risk Manage- 

ent Policies (RMPs)—as an appropriate set of security controls 

o mitigate the identified set of threats—in the fundamental step 

f selecting mitigations for risk management. We have formalized 

he MSRMP as a multi-objective optimization problem that can be 

olved by using state-of-the-art techniques for Pareto Optimality. 

n top of such techniques, we have proposed a semi-automated 

pproach to define and solve instances of the MSRMP. We have 

lso discussed strategies to reduce the large search space resulting 

rom real instances of the MSRMP. We have illustrated the main 

otions of our approach on a simple yet representative running ex- 

mple. An implementation of the proposed approach has allowed 

s to perform an experimental evaluation whose results confirm 

he practical viability of the proposed approach. 

As future work, we consider four possibilities. First, we plan 

o further validate the flexibility of our approach by integrating 

t with a methodology for the risk evaluation of identity proof- 

ng solutions introduced in Pernpruner et al. (2021) . In that work, 

he authors present a framework composed to analyze the risks 

f enrollment solutions at the design time. In particular, they fo- 

us on associating security controls with threats deriving from a 

et of attackers, so to reduce risks at an acceptable level while 

uaranteeing usability and economy. However, it is left open the 

roblem of determining the optimal set of mitigations, and this 

s the reason for which the approach presented in this work be- 

omes an interesting complement. The second (medium term) pos- 

ibility for future work is to identify a comprehensive baseline of 

ontrols (such as the one in the Risk Management Framework of 

IST 5 ) and provide an approach to tailor it to the use case sce- 
5 https://csrc.nist.gov/Projects/risk-management/about-rmf/select-step 

https://csrc.nist.gov/Projects/risk-management/about-rmf/select-step
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ario under consideration in order to lower the barrier of adop- 

ion of the approach proposed here by addressing the intricacies 

f evaluating the trade-offs of security controls including costs and 

kills required. The third (and longer term) line of future work is 

o investigate how it is possible to smoothly combine the approach 

roposed in this work with available methodologies for risk man- 

gement (e.g., STRIDE). 

We also would like to consider the aspect of the complexity 

f implementing controls as possible future work. Considering the 

omplexity of controls in the risk assessment is challenging. For 

nstance, one form of control may handle one risk source/threat 

ut may define new dangers. Indeed, mutually incompatible con- 

rols can be specified by using suitable specification tricks (basi- 

ally, the idea is to use a logical xor). A more challenging aspect is 

o consider the fact that adding security controls may end up en- 

arging the attack surface, thus contributing to increasing the risk 

evel. This is a complex area, and such intrinsic constraints requires 

mproving the optimization approach presented in this work. 
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